Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance

Chahat Suri , Babita Pande , Lakkakula Suhasini Sahithi , Shashikant Swarnkar , Tuneer Khelkar , Henu Kumar Verma

Cancer Drug Resistance ›› 2025, Vol. 8 : 7

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :7 DOI: 10.20517/cdr.2024.164
review-article

Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance

Author information +
History +
PDF

Abstract

Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.

Keywords

Gastrointestinal cancers / immune cells / tumor microenvironment / metabolic pathways / drug resistance

Cite this article

Download citation ▾
Chahat Suri, Babita Pande, Lakkakula Suhasini Sahithi, Shashikant Swarnkar, Tuneer Khelkar, Henu Kumar Verma. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. Cancer Drug Resistance, 2025, 8: 7 DOI:10.20517/cdr.2024.164

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold M,Neale RE.Global burden of 5 major types of gastrointestinal cancer.Gastroenterology2020;159:335-49.e15 PMCID:PMC8630546

[2]

Jardim SR,de Souza HSP.The rise of gastrointestinal cancers as a global phenomenon: unhealthy behavior or progress?.Int J Environ Res Public Health2023;20:3640 PMCID:PMC9962127

[3]

Bray F,Sung H.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2024;74:229-63

[4]

Xi Y.Global colorectal cancer burden in 2020 and projections to 2040.Transl Oncol2021;14:101174 PMCID:PMC8273208

[5]

Thrift AP,El-Serag HB.Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention.Nat Rev Clin Oncol2023;20:338-49

[6]

Wang X,Chen X.Drug resistance and combating drug resistance in cancer.Cancer Drug Resist2019;2:141-60 PMCID:PMC8315569

[7]

Suri C,Sahu T,Verma HK.Revolutionizing gastrointestinal disorder management: cutting-edge advances and future prospects.J Clin Med2024;13:3977 PMCID:PMC11242723

[8]

Verma HK,Bhaskar LVKS.Molecular signaling pathways involved in gastric cancer chemoresistance. In: Raju GSR, Bhaskar LVKS, Editors. Theranostics Approaches to Gastric and Colon Cancer. Singapore: Springer Singapore; 2020. pp. 117-34.

[9]

Wang Q,Zhang Y.Role of tumor microenvironment in cancer progression and therapeutic strategy.Cancer Med2023;12:11149-65 PMCID:PMC10242329

[10]

Zhao Y,Shen X.Targeting myeloid-derived suppressor cells in tumor immunotherapy: current, future and beyond.Front Immunol2023;14:1157537 PMCID:PMC10063857

[11]

Zhu Y,Wang L,Yang J.Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment.Front Endocrinol2022;13:988295 PMCID:PMC9421293

[12]

Kim SK.The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment.Front Pharmacol2022;13:868695 PMCID:PMC9171538

[13]

Phan LM,Lee MH.Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies.Cancer Biol Med2014;11:1-19 PMCID:PMC3969803

[14]

Zou W.Beggars banquet: metabolism in the tumor immune microenvironment and cancer therapy.Cell Metab2023;35:1101-13 PMCID:PMC10527949

[15]

Nakahara R,Aki S.Metabolic adaptations of cancer in extreme tumor microenvironments.Cancer Sci2023;114:1200-7 PMCID:PMC10067430

[16]

Zhang X,Gao Y.The role of tumor metabolic reprogramming in tumor immunity.Int J Mol Sci2023;24:17422 PMCID:PMC10743965

[17]

Zeng W,Jin S,Liu PS.Functional polarization of tumor-associated macrophages dictated by metabolic reprogramming.J Exp Clin Cancer Res2023;42:245 PMCID:PMC10517486

[18]

Kim J,Min H.Exploring the potential of glycolytic modulation in myeloid-derived suppressor cells for immunotherapy and disease management.Immune Netw2024;24:e26 PMCID:PMC11224668

[19]

Ohtsu A.Chemotherapy for metastatic gastric cancer: past, present, and future.J Gastroenterol2008;43:256-64

[20]

Kaufman S.5-fluorouracil in the treatment of gastrointestinal neoplasia.N Engl J Med1973;288:199-201

[21]

Porpiglia AS.Surgical options in the treatment of lower gastrointestinal tract cancers.Curr Treat Options Oncol2015;16:46

[22]

Chang B.The art and science of radiation therapy for gastrointestinal cancers.J Gastrointest Oncol2014;5:154-5 PMCID:PMC4074957

[23]

Hafeez U,Scott AM.Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases.Curr Opin Pharmacol2018;41:114-21

[24]

Mercogliano MF,Mauro FL.Emerging targeted therapies for HER2-positive breast cancer.Cancers2023;15:1987 PMCID:PMC10093019

[25]

Koukourakis GV.Targeted therapy with bevacizumab (Avastin) for metastatic colorectal cancer.Clin Transl Oncol2011;13:710-4

[26]

Basudan AM.The role of immune checkpoint inhibitors in cancer therapy.Clin Pract2022;13:22-40 PMCID:PMC9844484

[27]

Klempner SJ,Bane S.Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence.Oncologist2020;25:e147-59 PMCID:PMC6964127

[28]

Grothey A,Pavlakis N,Bruix J.Evolving role of regorafenib for the treatment of advanced cancers.Cancer Treat Rev2020;86:101993

[29]

Menyhárt O.Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis.Comput Struct Biotechnol J2021;19:949-60 PMCID:PMC7868685

[30]

Jin HR,Wang ZJ.Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics.J Hematol Oncol2023;16:103 PMCID:PMC10498649

[31]

Maffuid K.Decoding the complexity of immune-cancer cell interactions: empowering the future of cancer immunotherapy.Cancers2023;15:4188 PMCID:PMC10453128

[32]

Navarro C,Santeliz R.Metabolic reprogramming in cancer cells: emerging molecular mechanisms and novel therapeutic approaches.Pharmaceutics2022;14:1303 PMCID:PMC9227908

[33]

Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity.Nat Rev Immunol2024;24:654-69

[34]

Arner EN.Metabolic programming and immune suppression in the tumor microenvironment.Cancer Cell2023;41:421-33 PMCID:PMC10023409

[35]

Chen X,Yi Z.The effects of metabolism on the immune microenvironment in colorectal cancer.Cell Death Discov2024;10:118 PMCID:PMC10920911

[36]

Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth.Cancer Cell2023;41:374-403

[37]

Liberti MV.The Warburg effect: how does it benefit cancer cells?.Trends Biochem Sci2016;41:211-8

[38]

Wang J,Hu F.Metabolic reprogramming of immune cells in the tumor microenvironment.Int J Mol Sci2024;25:12223 PMCID:PMC11594648

[39]

Coventry BJ.The immune system and responses to cancer: coordinated evolution.F1000Res2015;4:552 PMCID:PMC7735224

[40]

der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development.Immunol Rev2012;249:27-42 PMCID:PMC3645891

[41]

Siret C,Silvy F.Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma.Front Immunol2019;10:3070 PMCID:PMC6987391

[42]

Lim AR,Rathmell JC.The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy.Elife2020;9:e55185 PMCID:PMC7200151

[43]

Bose S,Le A.Glucose metabolism in cancer: the Warburg effect and beyond.Adv Exp Med Biol2021;1311:3-15 PMCID:PMC9639450

[44]

Raud B,Jones RG,Berod L.Fatty acid metabolism in CD8+ T cell memory: challenging current concepts.Immunol Rev2018;283:213-31 PMCID:PMC6691976

[45]

Kreuzaler P,Segal J.Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion.Mol Metab2020;33:83-101 PMCID:PMC7056924

[46]

Chen G,Li H,He T.Role of hypoxia in the tumor microenvironment and targeted therapy.Front Oncol2022;12:961637 PMCID:PMC9545774

[47]

Kant R,Anas M.Deregulated transcription factors in cancer cell metabolisms and reprogramming.Semin Cancer Biol2022;86:1158-74 PMCID:PMC11220368

[48]

Henze AT.The impact of hypoxia on tumor-associated macrophages.J Clin Invest2016;126:3672-9 PMCID:PMC5096805

[49]

Hasan MN,Patel SM.The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity.Cancers2022;14:3331 PMCID:PMC9316955

[50]

Fu Z,Smaill JB,Patterson AV.Tumour hypoxia-mediated immunosuppression: mechanisms and therapeutic approaches to improve cancer immunotherapy.Cells2021;10:1006 PMCID:PMC8146304

[51]

Wang ZH,Zhang P,Zhou Q.Lactate in the tumour microenvironment: from immune modulation to therapy.EBioMedicine2021;73:103627 PMCID:PMC8524104

[52]

Oparaugo NC,Nguyen NPN,Agak GW.Human regulatory T cells: understanding the role of tregs in select autoimmune skin diseases and post-transplant nonmelanoma skin cancers.Int J Mol Sci2023;24:1527 PMCID:PMC9864298

[53]

Li X,Zhang B.Lactate metabolism in human health and disease.Signal Transduct Target Ther2022;7:305 PMCID:PMC9434547

[54]

Marciscano AE.The role of dendritic cells in cancer and anti-tumor immunity.Semin Immunol2021;52:101481 PMCID:PMC8545750

[55]

Amitrano AM.Metabolic challenges in anticancer CD8 T cell functions.Immune Netw2023;23:e9 PMCID:PMC9995993

[56]

Wu H,Hochrein SM.Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming.Nat Commun2023;14:6858 PMCID:PMC10611730

[57]

Miao L,Zhang B.Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy.J Transl Med2024;22:229 PMCID:PMC10909296

[58]

Li K,Zhang B.Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer.Signal Transduct Target Ther2021;6:362 PMCID:PMC8497485

[59]

Iske J,Roesel MJ,Nian Y.Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation.Cytotherapy2023;25:789-97

[60]

Wang Y,Bi Y,Liu G.Metabolic regulation of myeloid-derived suppressor cell function in cancer.Cells2020;9:1011 PMCID:PMC7226088

[61]

la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches.Front Oncol2019;9:1143 PMCID:PMC6839026

[62]

Li M,Xiong L,Wang J.Metabolism, metabolites, and macrophages in cancer.J Hematol Oncol2023;16:80 PMCID:PMC10367370

[63]

Xing F,Watabe K.Cancer associated fibroblasts (CAFs) in tumor microenvironment.Front Biosci2010;15:166-79 PMCID:PMC2905156

[64]

Cao J,Zeng F,Luo G.Effects of altered glycolysis levels on CD8+ T cell activation and function.Cell Death Dis2023;14:407 PMCID:PMC10329707

[65]

Jian SL,Su YC.Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis.Cell Death Dis2017;8:e2779 PMCID:PMC5520713

[66]

Li W,Kryczek I.Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer.Cell Metab2018;28:87-103.e6 PMCID:PMC6238219

[67]

Newton R,Turka LA.Immunometabolism of regulatory T cells.Nat Immunol2016;17:618-25 PMCID:PMC5006394

[68]

Shi R,Miao H.Metabolism in tumor microenvironment: implications for cancer immunotherapy.MedComm2020;1:47-68 PMCID:PMC8489668

[69]

Liu C,Gao T,Bajinka O.A mini-review-cancer energy reprogramming on drug resistance and immune response.Transl Oncol2024;49:102099 PMCID:PMC11380382

[70]

Jiang M,Tian H.Metabolism of cancer cells and immune cells in the initiation, progression, and metastasis of cancer.Theranostics2025;15:155-88 PMCID:PMC11667227

[71]

Verma HK,Lakkakula S,Bhaskar LVKS.A retrospective look at anti-EGFR agents in pancreatic cancer therapy.Curr Drug Metab2019;20:958-66

[72]

Gupta I,Sastry KS.Deciphering the complexities of cancer cell immune evasion: mechanisms and therapeutic implications.Adv Cancer Biol Metastasis2023;8:100107

[73]

Wu Y,Niu M,Wu K.Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.Mol Cancer2022;21:184 PMCID:PMC9513992

[74]

Paul S.The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy.Front Immunol2017;8:1124 PMCID:PMC5601256

[75]

Sarkar T,Sa G.Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape.Curr Res Immunol2021;2:132-41 PMCID:PMC9040151

[76]

Bilotta MT,Fitzgerald DJ.Managing the TME to improve the efficacy of cancer therapy.Front Immunol2022;13:954992 PMCID:PMC9630343

[77]

Wu P,Su M.Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment.Front Cell Dev Biol2021;9:641469 PMCID:PMC7957022

[78]

Xia L,Lin J.The cancer metabolic reprogramming and immune response.Mol Cancer2021;20:28 PMCID:PMC7863491

[79]

Sládek NE,Sreerama L.Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens.Cancer Chemother Pharmacol2002;49:309-21

[80]

Al-Saraireh YM,Abu-Azzam OH.Targeting cytochrome P450 enzymes in ovarian cancers: new approaches to tumor-selective intervention.Biomedicines2023;11:2898 PMCID:PMC10669316

[81]

Elia I.Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism.Nat Metab2021;3:21-32 PMCID:PMC8097259

[82]

Costanzo V,Andretta E,Bhaskar LVKS.A comprehensive review of cancer drug-induced cardiotoxicity in blood cancer patients: current perspectives and therapeutic strategies.Curr Treat Options Oncol2024;25:465-95

[83]

Bader JE,Rathmell JC.Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy.Mol Cell2020;78:1019-33 PMCID:PMC7339967

[84]

Ganjoo S,Corbali HI.The role of tumor metabolism in modulating T-cell activity and in optimizing immunotherapy.Front Immunol2023;14:1172931 PMCID:PMC10169689

[85]

Jin MZ.The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct Target Ther2020;5:166 PMCID:PMC7447642

[86]

Chen X,Yu D.Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance.Metabolites2020;10:289 PMCID:PMC7408410

[87]

Zhang C,Gao X.Platinum-based drugs for cancer therapy and anti-tumor strategies.Theranostics2022;12:2115-32 PMCID:PMC8899578

[88]

Xu Y.Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity.Ann Oncol2002;13:1841-51

[89]

Schuurmans F,Adema GJ.Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function.Front Immunol2024;15:1409238 PMCID:PMC11176483

[90]

Luby A.Targeting metabolism to control immune responses in cancer and improve checkpoint blockade immunotherapy.Cancers2021;13:5912 PMCID:PMC8656934

[91]

Dai H,Wang S.Connections between metabolism and epigenetic modification in MDSCs.Int J Mol Sci2020;21:7356 PMCID:PMC7582655

[92]

Chou FJ,Lang F.D-2-hydroxyglutarate in glioma biology.Cells2021;10:2345 PMCID:PMC8464856

[93]

Aboelella NS,Kim T,Zhou G.Oxidative stress in the tumor microenvironment and its relevance to cancer immunotherapy.Cancers2021;13:986 PMCID:PMC7956301

[94]

Zhang N,Xu SJ.5-fluorouracil: mechanisms of resistance and reversal strategies.Molecules2008;13:1551-69 PMCID:PMC6244944

[95]

Azwar S,Abdullah M,Mohtarrudin N.Recent updates on mechanisms of resistance to 5-fluorouracil and reversal strategies in colon cancer treatment.Biology2021;10:854 PMCID:PMC8466833

[96]

Alcindor T.Oxaliplatin: a review in the era of molecularly targeted therapy.Curr Oncol2011;18:18-25 PMCID:PMC3031353

[97]

Han L,Luo W.Enhanced de novo lipid synthesis mediated by FASN induces chemoresistance in colorectal cancer.Cancers2023;15:562 PMCID:PMC9913810

[98]

Fujita K,Ishida H.Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer.World J Gastroenterol2015;21:12234-48 PMCID:PMC4649109

[99]

O’dowd PD,Griffith DM.Oxaliplatin and its derivatives - an overview.Coord Chem Rev2023;497:215439

[100]

Yakkala PA,Shafi S.Prospects of topoisomerase inhibitors as promising anti-cancer agents.Pharmaceuticals2023;16:1456 PMCID:PMC10609717

[101]

Zhao LP,Zhang JW.Expression of RRM1 and its association with resistancy to gemcitabine-based chemotherapy in advanced nasopharyngeal carcinoma.Chin J Cancer2012;31:476-83 PMCID:PMC3777452

[102]

N’Guessan KF,Chu Z.Enhanced efficacy of combination of gemcitabine and phosphatidylserine-targeted nanovesicles against pancreatic cancer.Mol Ther2020;28:1876-86 PMCID:PMC7403342

[103]

Montinaro A,Saggau J.Potent pro-apoptotic combination therapy is highly effective in a broad range of cancers.Cell Death Differ2022;29:492-503 PMCID:PMC8901660

[104]

Tilekar K,Iancu CV,Choe JY.Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer.Biochim Biophys Acta Rev Cancer2020;1874:188457 PMCID:PMC7704680

[105]

Wood TE,Simpson CD.A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death.Mol Cancer Ther2008;7:3546-55

[106]

Koltai T,Carvalho TMA.Resistance to gemcitabine in pancreatic ductal adenocarcinoma: a physiopathologic and pharmacologic review.Cancers2022;14:2486 PMCID:PMC9139729

[107]

Wang WB,Zhao YP,Liao Q.Recent studies of 5-fluorouracil resistance in pancreatic cancer.World J Gastroenterol2014;20:15682-90 PMCID:PMC4229533

[108]

Amodio V,Bardelli A.DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors.Br J Cancer2024;131:1576-90 PMCID:PMC11554791

[109]

Pommier Y.New life of topoisomerase i inhibitors as antibody-drug conjugate warheads.Clin Cancer Res2023;29:991-3 PMCID:PMC10023384

[110]

Ghalehbandi S,Pranjol MZI.The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF.Eur J Pharmacol2023;949:175586

[111]

Choi YK.Metabolic roles of AMPK and metformin in cancer cells.Mol Cells2013;36:279-87 PMCID:PMC3887985

[112]

Singh R,Kumar A.2-deoxy-d-glucose: a novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in covid-19, and other pharmacological activities.Adv Pharmacol Pharm Sci2023;2023:9993386 PMCID:PMC9998157

[113]

Liang Y,Li L.Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway.Oncogene2020;39:469-85 PMCID:PMC6949190

[114]

Wang YN,Lu J.CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis.Oncogene2018;37:6025-40

[115]

Yang WH,Stamatatos O,Lukey MJ.Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy.Trends Cancer2021;7:790-804 PMCID:PMC9064286

[116]

Machado ND,Harris AL.Targeting mitochondrial oxidative phosphorylation: lessons, advantages, and opportunities.Br J Cancer2023;129:897-9 PMCID:PMC10491675

[117]

Li Y,Zhang Y,Song Y.Advances in targeted therapy of cholangiocarcinoma.Ann Med2024;56:2310196 PMCID:PMC10877652

[118]

Junior PLS, Borad MJ. Clinical utility of ivosidenib in the treatment of IDH1-mutant cholangiocarcinoma: evidence to date.Cancer Manag Res2023;15:1025-31 PMCID:PMC10516216

[119]

Liu C,Hu B,Chen Y.New insights into the therapeutic potentials of statins in cancer.Front Pharmacol2023;14:1188926 PMCID:PMC10359995

[120]

Fhu CW.Fatty acid synthase: an emerging target in cancer.Molecules2020;25:3935 PMCID:PMC7504791

[121]

Yao N,Duan N,Yu G.Exploring the landscape of drug resistance in gastrointestinal cancer immunotherapy: a review.Medicine2024;103:e36957 PMCID:PMC10783409

[122]

Kumar V,Tcyganov E.The nature of myeloid-derived suppressor cells in the tumor microenvironment.Trends Immunol2016;37:208-20 PMCID:PMC4775398

[123]

Zhao S,Avina-Ochoa N,Kaech SM.Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet.Semin Immunol2021;52:101485 PMCID:PMC8545851

[124]

Corrado M.Targeting memory T cell metabolism to improve immunity.J Clin Invest2022;132:e148546 PMCID:PMC8718135

[125]

Cheng S,Wang Y.Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer.Clin Sci2019;133:1745-58

[126]

Lord SR.Is it still worth pursuing the repurposing of metformin as a cancer therapeutic?.Br J Cancer2023;128:958-66 PMCID:PMC10006178

[127]

Bramante CT, Beckman KB, Mehta T, et al. Metformin reduces SARS-CoV-2 in a phase 3 randomized placebo controlled clinical trial. medRxiv 2023;medRxiv:2023.06.06.23290989. Available from https://www.medrxiv.org/content/10.1101/2023.06.06.23290989v1 [accessed 6 Feb 2025]..

[128]

Gross MI,Dennison JB.Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer.Mol Cancer Ther2014;13:890-901

[129]

Usart M,Stetka J.The glutaminase inhibitor CB-839 targets metabolic dependencies of JAK2-mutant hematopoiesis in MPN.Blood Adv2024;8:2312-25 PMCID:PMC11117009

[130]

Timofeeva N,Baran N.Preclinical investigations of the efficacy of the glutaminase inhibitor CB-839 alone and in combinations in chronic lymphocytic leukemia.Front Oncol2023;13:1161254 PMCID:PMC10203524

[131]

Myers RA,Williams S.Enasidenib: an oral IDH2 inhibitor for the treatment of acute myeloid leukemia.J Adv Pract Oncol2018;9:435-40 PMCID:PMC6347084

[132]

Stakišaitis D,Damanskienė E,Balnytė I.The importance of gender-related anticancer research on mitochondrial regulator sodium dichloroacetate in preclinical studies in vivo.Cancers2019;11:1210 PMCID:PMC6721567

[133]

Shim JK,Yoon SJ.Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres.Cancer Cell Int2022;22:309 PMCID:PMC9552483

[134]

Chen L,Fang J.Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells.Oncotarget2016;7:54691-701 PMCID:PMC5342373

[135]

Pajak B,Sołtyka M.2-deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents.Int J Mol Sci2019;21:234 PMCID:PMC6982256

[136]

Przystal JM,Khozoie C.Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM.Cell Death Dis2018;9:1192 PMCID:PMC6294248

[137]

Marelli G,Portale F.Lipid-loaded macrophages as new therapeutic target in cancer.J Immunother Cancer2022;10:e004584 PMCID:PMC9263925

[138]

Balyan R,Gascoigne NRJ.The ups and downs of metabolism during the lifespan of a T cell.Int J Mol Sci2020;21:7972 PMCID:PMC7663011

[139]

Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T cell metabolism for therapeutic efficacy.Cancers2022;14:5442 PMCID:PMC9658570

[140]

Miska J.Targeting fatty acid metabolism in glioblastoma.J Clin Invest2023;133:e163448 PMCID:PMC9797338

[141]

Wang H,Tsui YC.CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors.Nat Immunol2020;21:298-308 PMCID:PMC7043937

[142]

Siddiqui S.Fatty acid metabolism in myeloid-derived suppressor cells and tumor-associated macrophages: key factor in cancer immune evasion.Cancers2022;14:250 PMCID:PMC8750448

[143]

Sui H,Liu X.Immunotherapy of targeting MDSCs in tumor microenvironment.Front Immunol2022;13:990463 PMCID:PMC9484521

[144]

Taylor A,Blaser K,Akdis CA.Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells.Immunology2006;117:433-42 PMCID:PMC1782242

[145]

Leone RD.Metabolism of immune cells in cancer.Nat Rev Cancer2020;20:516-31 PMCID:PMC8041116

[146]

Dutta A,Bhaumik I.Novel sulforaphane analog disrupts phosphatidylinositol-3-kinase-protein kinase b pathway and inhibits cancer cell progression via reactive oxygen species-mediated caspase-independent apoptosis.ACS Pharmacol Transl Sci2024;7:195-211 PMCID:PMC10789126

[147]

Giannotta C,Massaia M.The immune suppressive tumor microenvironment in multiple myeloma: the contribution of myeloid-derived suppressor cells.Front Immunol2022;13:1102471 PMCID:PMC9885853

[148]

Vasseur S.Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance.Oncogenesis2022;11:46 PMCID:PMC9363460

[149]

Bleve A,Sica A.Lipid metabolism and cancer immunotherapy: immunosuppressive myeloid cells at the crossroad.Int J Mol Sci2020;21:5845 PMCID:PMC7461616

[150]

Ruiz-Pérez MV,Oliynyk G.Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma.iScience2021;24:102128 PMCID:PMC7895756

[151]

Galgani M,La Cava A.Role of metabolism in the immunobiology of regulatory T cells.J Immunol2016;197:2567-75 PMCID:PMC5027986

[152]

Shao N,Liu J.Targeting lipid metabolism of macrophages: a new strategy for tumor therapy.J Adv Res2025;68:99-114 PMCID:PMC11785569

[153]

Ren Y,Yuan H,Yu L.A novel insight into cancer therapy: lipid metabolism in tumor-associated macrophages.Int Immunopharmacol2024;135:112319

[154]

Huang R,Chen S.The role of tumor-associated macrophages in tumor immune evasion.J Cancer Res Clin Oncol2024;150:238 PMCID:PMC11076352

[155]

Wu L,Zheng L.RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis.Cancer Immunol Res2020;8:710-21

[156]

Hossain F,Wyczechowska D.Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies.Cancer Immunol Res2015;3:1236-47 PMCID:PMC4636942

[157]

Guerrero-Rodríguez SL,Pérez-Tapia SM.Role of CD36 in cancer progression, stemness, and targeting.Front Cell Dev Biol2022;10:1079076 PMCID:PMC9772993

[158]

Liao X,Li J.CD36 and its role in regulating the tumor microenvironment.Curr Oncol2022;29:8133-45 PMCID:PMC9688853

[159]

Zhong W,Han X.Upregulation of exosome secretion from tumor-associated macrophages plays a key role in the suppression of anti-tumor immunity.Cell Rep2023;42:113224 PMCID:PMC10697782

[160]

Qiao X,Xiong F.Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy.Lipids Health Dis2023;22:45 PMCID:PMC10064535

[161]

Zheng J.The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer.Front Oncol2023;13:1333839 PMCID:PMC10810416

[162]

Deng M,Long L.CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β.J Transl Med2019;17:352 PMCID:PMC6815430

[163]

Yin X,Wu B.PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction.Cell Rep2020;33:108278 PMCID:PMC7771208

[164]

Li X,Deng X.Targeting myeloid-derived suppressor cells to enhance the antitumor efficacy of immune checkpoint blockade therapy.Front Immunol2021;12:754196 PMCID:PMC8727744

[165]

Rae C,Chalmers AJ.Cytotoxicity and radiosensitizing activity of the fatty acid synthase inhibitor C75 is enhanced by blocking fatty acid uptake in prostate cancer cells.Adv Radiat Oncol2020;5:994-1005 PMCID:PMC7557210

[166]

Chen L,Wei H.Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors.Expert Opin Investig Drugs2019;28:917-30

[167]

Le Bourgeois T,Aksoylar HI.Targeting T cell metabolism for improvement of cancer immunotherapy.Front Oncol2018;8:237 PMCID:PMC6085483

[168]

Cortellino S.Metabolites and immune response in tumor microenvironments.Cancers2023;15:3898 PMCID:PMC10417674

[169]

Veglia F,Gabrilovich DI.Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.Nat Rev Immunol2021;21:485-98 PMCID:PMC7849958

[170]

Zhou D,Li Z,Wei R.The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment.Front Pharmacol2022;13:1091779 PMCID:PMC9795015

[171]

Hu C,Lin G,Yi H.Energy metabolism manipulates the fate and function of tumour myeloid-derived suppressor cells.Br J Cancer2020;122:23-9 PMCID:PMC6964679

[172]

Munansangu BSM,Walzl G,Kotze LA.Immunometabolism of myeloid-derived suppressor cells: implications for mycobacterium tuberculosis infection and insights from tumor biology.Int J Mol Sci2022;23:3512 PMCID:PMC8998693

[173]

Zhang Z,Chen Y.Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis.Exp Hematol Oncol2022;11:88 PMCID:PMC9644472

[174]

Ren X,He J.Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer.Nat Commun2023;14:7021 PMCID:PMC10622423

[175]

Xiao C,Zheng Y.Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy.Front Cell Dev Biol2022;10:1013885 PMCID:PMC9527271

[176]

Yan D,Xu M.Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor.Front Immunol2019;10:1399 PMCID:PMC6593140

[177]

Bayat Mokhtari R,Baluch N.Combination therapy in combating cancer.Oncotarget2017;8:38022-43 PMCID:PMC5514969

[178]

Zhang Y,Huang Z.Targeting glucose metabolism enzymes in cancer treatment: current and emerging strategies.Cancers2022;14:4568 PMCID:PMC9559313

[179]

Simons AL,Mattson DM,Spitz DR.2-deoxy-d-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells.Cancer Res2007;67:3364-70 PMCID:PMC3852417

[180]

Hu A,Xu Q.A novel CPT1A covalent inhibitor modulates fatty acid oxidation and CPT1A-VDAC1 axis with therapeutic potential for colorectal cancer.Redox Biol2023;68:102959 PMCID:PMC10692921

[181]

Son CH,Koh EK.Combination treatment with decitabine and ionizing radiation enhances tumor cells susceptibility of T cells.Sci Rep2016;6:32470 PMCID:PMC5037374

[182]

Patel SA.Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies.Immunity2018;48:417-33 PMCID:PMC6948191

[183]

Wicker CA,Krishnan S.Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models.Cancer Lett2021;502:180-8 PMCID:PMC7897292

[184]

Franczak MA,Harasim G.Metabolic effects of new glucose transporter (GLUT-1) and lactate dehydrogenase-A (LDH-A) inhibitors against chemoresistant malignant mesothelioma.Int J Mol Sci2023;24:7771 PMCID:PMC10177874

[185]

Kalyanaraman B,Hardy M.OXPHOS-targeting drugs in oncology: new perspectives.Expert Opin Ther Targets2023;27:939-52 PMCID:PMC11034819

[186]

Curtis NJ,Hopcroft L.Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity.Oncotarget2017;8:69219-36 PMCID:PMC5642474

[187]

Zha J,Lu J.A review of lactate-lactylation in malignancy: its potential in immunotherapy.Front Immunol2024;15:1384948 PMCID:PMC11109376

[188]

Fendt SM,Erez A.Targeting metabolic plasticity and flexibility dynamics for cancer therapy.Cancer Discov2020;10:1797-807 PMCID:PMC7710573

[189]

Halford S,Wedge SR.A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer.Clin Cancer Res2023;29:1429-39 PMCID:PMC7614436

[190]

Varghese S,Williams LJ.The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cell-mediated immunotherapies.Mol Cancer Ther2021;20:500-11 PMCID:PMC7933078

[191]

Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy.Oncoimmunology2020;9:1777625 PMCID:PMC7466863

[192]

Huemer M,Brugger SD.Antibiotic resistance and persistence-Implications for human health and treatment perspectives.EMBO Rep2020;21:e51034 PMCID:PMC7726816

[193]

Baghban R,Jahanban-Esfahlan R.Tumor microenvironment complexity and therapeutic implications at a glance.Cell Commun Signal2020;18:59 PMCID:PMC7140346

[194]

Wei D,Wang Z.The development of single-cell metabolism and its role in studying cancer emergent properties.Front Oncol2021;11:814085 PMCID:PMC8784738

[195]

Danzi F,Mafficini A.To metabolomics and beyond: a technological portfolio to investigate cancer metabolism.Signal Transduct Target Ther2023;8:137 PMCID:PMC10033890

[196]

Wang W,Wang G,Yang F.Cancer metabolites: promising biomarkers for cancer liquid biopsy.Biomark Res2023;11:66 PMCID:PMC10311880

[197]

Ruprecht NA,Schaefer K,Sens D.A review: multi-omics approach to studying the association between ionizing radiation effects on biological aging.Biology2024;13:98 PMCID:PMC10886797

[198]

Wang DR,Sun YL.Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response.Signal Transduct Target Ther2022;7:331 PMCID:PMC9485144

[199]

Artyomov MN.Immunometabolism in the single-cell era.Cell Metab2020;32:710-25 PMCID:PMC7660984

[200]

Woitek R.The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism.Br J Cancer2021;124:1187-98 PMCID:PMC8007617

[201]

Wu M,Zhang Y,Wu M.Imaging-based biomarkers for predicting and evaluating cancer immunotherapy response.Radiol Imaging Cancer2019;1:e190031 PMCID:PMC7983749

[202]

Verma HK,Mazzone P,Bhaskar LVKS.Micro RNA facilitated chemoresistance in gastric cancer: a novel biomarkers and potential therapeutics.Alex J Med2020;56:81-92

[203]

Liao J,Gan Y.Artificial intelligence assists precision medicine in cancer treatment.Front Oncol2022;12:998222 PMCID:PMC9846804

[204]

Mao W.Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability.Front Immunol2022;13:1056622 PMCID:PMC9720167

[205]

Raczka AM.Glutaminase inhibition in renal cell carcinoma therapy.Cancer Drug Resist2019;2:356-64 PMCID:PMC8992627

[206]

Gao W,Shtylla B.Realizing the promise of project optimus: challenges and emerging opportunities for dose optimization in oncology drug development.CPT Pharmacometrics Syst Pharmacol2024;13:691-709 PMCID:PMC11098159

[207]

Sargent DJ,Schwartz L.Validation of novel imaging methodologies for use as cancer clinical trial end-points.Eur J Cancer2009;45:290-9 PMCID:PMC2802223

[208]

Roma-Rodrigues C,Baptista PV.Targeting tumor microenvironment for cancer therapy.Int J Mol Sci2019;20:840 PMCID:PMC6413095

[209]

Zhu XR,Wang L.Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer.Cell Death Dis2021;12:918 PMCID:PMC8497628

[210]

Mercieca-Bebber R,Calvert MJ,Friedlander M.The importance of patient-reported outcomes in clinical trials and strategies for future optimization.Patient Relat Outcome Meas2018;9:353-67 PMCID:PMC6219423

[211]

Su R,Huang M,Yu H.Immunometabolism in cancer: basic mechanisms and new targeting strategy.Cell Death Discov2024;10:236 PMCID:PMC11099033

[212]

Duraj T,Seyfried TN,Ayuso-Sacido A.Metabolic therapy and bioenergetic analysis: the missing piece of the puzzle.Mol Metab2021;54:101389 PMCID:PMC8637646

[213]

Bae J,Cho G.The patient-derived cancer organoids: promises and challenges as platforms for cancer discovery.Cancers2022;14:2144 PMCID:PMC9105149

[214]

Han J,Chen Y.Recent metabolomics analysis in tumor metabolism reprogramming.Front Mol Biosci2021;8:763902 PMCID:PMC8660977

[215]

Lemberg KM,Tsukamoto T,Slusher BS.Clinical development of metabolic inhibitors for oncology.J Clin Invest2022;132:e148550 PMCID:PMC8718137

[216]

Hu T,Cai S.Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology.Nat Commun2023;14:8260 PMCID:PMC10716522

[217]

Costa B.Drug metabolism for the identification of clinical biomarkers in breast cancer.Int J Mol Sci2022;23:3181 PMCID:PMC8951384

[218]

Pinto N.Clinically relevant genetic variations in drug metabolizing enzymes.Curr Drug Metab2011;12:487-97 PMCID:PMC3110519

[219]

Xia JY.Advances in screening and detection of gastric cancer.J Surg Oncol2022;125:1104-9 PMCID:PMC9322671

[220]

Liu S,Schofield CJ.Isocitrate dehydrogenase variants in cancer - cellular consequences and therapeutic opportunities.Curr Opin Chem Biol2020;57:122-34 PMCID:PMC7487778

[221]

Yang H,Liu M.Patient-derived organoids: a promising model for personalized cancer treatment.Gastroenterol Rep2018;6:243-5 PMCID:PMC6225812

[222]

Derbal Y.Adaptive control of tumor growth.Cancer Control2024;31:10732748241230869 PMCID:PMC10832444

[223]

Garg P,Kulkarni P,Salgia R.Emerging therapeutic strategies to overcome drug resistance in cancer cells.Cancers2024;16:2478 PMCID:PMC11240358

[224]

Peng J,Dönnes P.Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: applications and challenges.Front Pharmacol2021;12:720694 PMCID:PMC8514674

[225]

Wiertsema SP,Garssen J.The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies.Nutrients2021;13:886 PMCID:PMC8001875

[226]

Chen C,Qing Y.Metabolic heterogeneity in tumor microenvironment - a novel landmark for immunotherapy.Autoimmun Rev2024;23:103579

[227]

Crinier A,Bléry M.Helper-like innate lymphoid cells and cancer immunotherapy.Semin Immunol2019;41:101274

[228]

Delou JMA,Souza LCM.Highlights in resistance mechanism pathways for combination therapy.Cells2019;8:1013 PMCID:PMC6770082

[229]

Pavlova NN,Thompson CB.The hallmarks of cancer metabolism: still emerging.Cell Metab2022;34:355-77 PMCID:PMC8891094

[230]

Chang CH,O’Sullivan D.Metabolic competition in the tumor microenvironment is a driver of cancer progression.Cell2015;162:1229-41 PMCID:PMC4864363

[231]

Wang Y,Yang L.Metabolic reprogramming in the immunosuppression of tumor-associated macrophages.Chin Med J2022;135:2405-16 PMCID:PMC9945195

[232]

Tucci P.Targeting cancer metabolism as a new strategy to enhance treatment efficacy and overcome resistance.Cancers2024;16:3629 PMCID:PMC11545175

[233]

Pajai S,Tripathi SC.Targeting immune-onco-metabolism for precision cancer therapy.Front Oncol2023;13:1124715 PMCID:PMC9932929

[234]

Demicco M,Leithner K.Metabolic heterogeneity in cancer.Nat Metab2024;6:18-38

[235]

Wei J,Du H.Improving cancer immunotherapy: exploring and targeting metabolism in hypoxia microenvironment.Front Immunol2022;13:845923 PMCID:PMC8907427

[236]

Meng W,Sha Y.Metabolic connectome and its role in the prediction, diagnosis, and treatment of complex diseases.Metabolites2024;14:93 PMCID:PMC10890086

[237]

Varayathu H,Thomas BE,Naik R.Combination strategies to augment immune check point inhibitors efficacy - implications for translational research.Front Oncol2021;11:559161 PMCID:PMC8193928

[238]

Faubert B,DeBerardinis RJ.Metabolic reprogramming and cancer progression.Science2020;368:eaaw5473 PMCID:PMC7227780

[239]

Fernández LP,Ramírez de Molina A.Alterations of lipid metabolism in cancer: implications in prognosis and treatment.Front Oncol2020;10:577420 PMCID:PMC7655926

[240]

Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN, Hussein A. Therapeutic targeting of hypoxia-inducible factors in cancer.Int J Mol Sci2024;25:2060 PMCID:PMC10888675

[241]

Xu X,Jiang X.Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential.Exp Mol Med2023;55:1357-70 PMCID:PMC10394076

[242]

Mao Y,Xia W.Metabolic reprogramming, sensing, and cancer therapy.Cell Rep2024;43:115064

[243]

Cluntun AA,Cerione RA.Glutamine metabolism in cancer: understanding the heterogeneity.Trends Cancer2017;3:169-80 PMCID:PMC5383348

[244]

Saxton RA.mTOR signaling in growth, metabolism, and disease.Cell2017;169:361-71

AI Summary AI Mindmap
PDF

406

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/