Supramolecular host-guest nanosystems for overcoming cancer drug resistance

Sha Wu , Miaomiao Yan , Minghao Liang , Wenzhi Yang , Jingyu Chen , Jiong Zhou

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (4) : 805 -27.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (4) :805 -27. DOI: 10.20517/cdr.2023.77
review-article

Supramolecular host-guest nanosystems for overcoming cancer drug resistance

Author information +
History +
PDF

Abstract

Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.

Keywords

Supramolecular nanosystems / host-guest interaction / cancer drug resistance

Cite this article

Download citation ▾
Sha Wu, Miaomiao Yan, Minghao Liang, Wenzhi Yang, Jingyu Chen, Jiong Zhou. Supramolecular host-guest nanosystems for overcoming cancer drug resistance. Cancer Drug Resistance, 2023, 6(4): 805-27 DOI:10.20517/cdr.2023.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Bukowski K,Kontek R.Mechanisms of multidrug resistance in cancer chemotherapy.Int J Mol Sci2020;21:3233 PMCID:PMC7247559

[3]

Ward RA,Floc’h N,McKerrecher D.Challenges and opportunities in cancer drug resistance.Chem Rev2021;121:3297-351

[4]

Vasan N,Hyman DM.A view on drug resistance in cancer.Nature2019;575:299-309 PMCID:PMC8008476

[5]

Tiek D.DNA damage and metabolic mechanisms of cancer drug resistance.Cancer Drug Resist2022;5:368-79 PMCID:PMC9255237

[6]

Wu G,George J,Hebbard L.Overcoming treatment resistance in cancer: current understanding and tactics.Cancer Lett2017;387:69-76

[7]

Aleksakhina SN,Imyanitov EN.Mechanisms of acquired tumor drug resistance.Biochim Biophys Acta Rev Cancer2019;1872:188310

[8]

Robey RW,Hall MD,Bates SE.Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat Rev Cancer2018;18:452-64

[9]

Oxnard GR.The cellular origins of drug resistance in cancer.Nat Med2016;22:232-4

[10]

Mullard A.Stemming the tide of drug resistance in cancer.Nat Rev Drug Discov2020;19:221-3

[11]

Liu J,Wei T.Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer.Exploration2021;1:21-34 PMCID:PMC10291567

[12]

Mura S,Couvreur P.Stimuli-responsive nanocarriers for drug delivery.Nat Mater2013;12:991-1003

[13]

Su Z,Zhao SC.Novel nanomedicines to overcome cancer multidrug resistance.Drug Resist Updat2021;58:100777

[14]

Coombes R.Cancer drug resistance needs urgent attention, says research chief.BMJ2019;365:l1934

[15]

Lehn JM.Supramolecular chemistry: Where from? Where to?.Chem Soc Rev2017;46:2378-9

[16]

Zhou J,Li Q,Huang F.Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene.J Am Chem Soc2020;142:2228-32

[17]

Tang R,Zhu S,Lu B.Pillar[6]arenes: from preparation, host-guest property to self-assembly and applications.Chinese Chem Lett2023;34:107734

[18]

Yang L,Wang Z.Supramolecular polymers: historical development, preparation, characterization, and functions.Chem Rev2015;115:7196-239

[19]

Yu G,Huang F.Supramolecular amphiphiles based on host-guest molecular recognition motifs.Chem Rev2015;115:7240-303

[20]

Zhang W,Zhou J.Biphenarenes, versatile synthetic macrocycles for supramolecular chemistry.Molecules2023;28:4422 PMCID:PMC10254875

[21]

Hu XY,Chen FY.A host-guest drug delivery nanosystem for supramolecular chemotherapy.J Control Release2020;324:124-33

[22]

Wang H,Leslie F,Cui H.Supramolecular nanomedicines through rational design of self-assembling prodrugs.Trends Pharmacol Sci2022;43:510-21 PMCID:PMC9106924

[23]

Wang D,Xu L.Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy.J Am Chem Soc2018;140:8797-806

[24]

Chang R,Zhao L,Xing R.Amino-acid-encoded supramolecular photothermal nanomedicine for enhanced cancer therapy.Adv Mater2022;34:2200139

[25]

Yan M.Methylene-bridged naphthotubes: new macrocyclic arenes with great potential for supramolecular chemistry.Org Chem Front2023;10:2340-5

[26]

Zhou J,Yu G,Chen X.Supramolecular cancer nanotheranostics.Chem Soc Rev2021;50:2839-91

[27]

Li Z,Yang YW.Stimuli-responsive drug-delivery systems based on supramolecular nanovalves.Matter2019;1:345-68

[28]

Wang L,Fan Y.Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.Adv Mater2013;25:3888-98

[29]

Zhou J,Li Y.[2]Pseudorotaxane-based supramolecular optical indicator for the visual detection of cellular cyanide excretion.Chemistry2019;25:14447-53

[30]

Yang X,Zhou J.Controlling intracellular enzymatic self-assembly of peptide by host-guest complexation for programming cancer cell death.Nano Lett2022;22:7588-96

[31]

Onishi Y,Ji RC.Supermolecular drug challenge to overcome drug resistance in cancer cells.Drug Discov Today2018;23:1556-63

[32]

Xu S,Huang W,Yan D.Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy.J Control Release2017;266:36-46

[33]

Wang Q,Wang D.In situ supramolecular self-assembly of Pt(IV) prodrug to conquer cisplatin resistance.Adv Funct Mater2021;31:2101826

[34]

Yang K,Yu X.A hybrid supramolecular polymeric nanomedicine for cascade-amplified synergetic cancer therapy.Angew Chem Int Ed Engl2022;61:e202203786

[35]

Yan M.Suprasomes: an emerging platform for cancer theranostics.Sci China Chem2023;66:613-4

[36]

Sun X,Lin J,Shen J.Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system.Cancer Drug Resist2023;6:390-415 PMCID:PMC10344729

[37]

Hu T,Xu J,Wu F.Nanomedicines for overcoming cancer drug resistance.Pharmaceutics2022;14:1606 PMCID:PMC9412887

[38]

Ikuta D,Wakamori S.Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins.Science2019;364:674-7

[39]

Szejtli J.Introduction and general overview of cyclodextrin chemistry.Chem Rev1998;98:1743-54

[40]

Del Valle EMM. Cyclodextrins and their uses: a review.Process Biochem2004;39:1033-46

[41]

Utzeri G,Murtinho D.Cyclodextrin-based nanosponges: overview and opportunities.Front Chem2022;10:859406 PMCID:PMC8987506

[42]

Gandhi S.Cyclodextrins-modified metallic nanoparticles for effective cancer therapy.J Control Release2021;339:41-50

[43]

Wankar J,Gera S,Pandit A.Recent advances in host-guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering.Adv Funct Mater2020;30:1909049

[44]

Wang M.Discovery of non-classical complex models between a cationic water-soluble pillar[6]arene and naphthalenesulfonate derivatives and their self-assembling behaviors.Soft Matter2019;15:4127-31

[45]

Fang G,Chen S,Zhang A.Cyclodextrin-based host-guest supramolecular hydrogels for local drug delivery.Coord Chem Rev2022;454:214352

[46]

Liu Z.Multicharged cyclodextrin supramolecular assemblies.Chem Soc Rev2022;51:4786-827

[47]

Davis ME.Cyclodextrin-based pharmaceutics: past, present and future.Nat Rev Drug Discov2004;3:1023-35

[48]

Yuan Y,Fang Y,Huang H.Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers.J Mater Chem B2022;10:2077-96

[49]

Yang B,Lei Q,Feng J.Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs.ACS Appl Mater Interfaces2015;7:22084-94

[50]

Wang H,Yang Y,Zhang Y.Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance.Cancer Drug Resist2022;5:954-70 PMCID:PMC9771744

[51]

Yu G,Zhou J.Supramolecular polymer-based nanomedicine: high therapeutic performance and negligible long-term immunotoxicity.J Am Chem Soc2018;140:8005-19

[52]

Yang C,Tu K,Li Z.Star-shaped polymer of β-cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition.Colloid Surface B2018;169:10-9

[53]

Das M,Joshi A.Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: a multiple faceted platform for stimulation of multi-drug resistance reversal.Carbohydr Polym2020;247:116751

[54]

Mirzaei S,Hashemi F.Advances in understanding the role of P-gp in doxorubicin resistance: molecular pathways, therapeutic strategies, and prospects.Drug Discov Today2022;27:436-55

[55]

Zhang H,Ashby CR Jr,Chen ZS.Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp).Med Res Rev2021;41:525-55

[56]

Halder J,Kar B,Rath G.Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer.Nanomedicine2022;40:102494

[57]

Gottesman MM.The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene.J Natl Cancer Inst2015;107:djv222 PMCID:PMC4836801

[58]

Zhang L,Hu C.CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells.Mol Cancer2022;21:103 PMCID:PMC9027122

[59]

Wang Q,Wang L.Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer.Acta Biomater2019;94:469-81

[60]

de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem Soc Rev2021;50:5397-434 PMCID:PMC8111542

[61]

Tang G,Liu J,Fan K.Nanozyme for tumor therapy: surface modification matters.Exploration2021;1:75-89 PMCID:PMC10291575

[62]

Liu J,Shi L.A sequentially responsive nanosystem breaches cascaded bio-barriers and suppresses P-glycoprotein function for reversing cancer drug resistance.ACS Appl Mater Interfaces2020;12:54343-55

[63]

Brownell JE,Ranalli T.Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.Cell1996;84:843-51

[64]

Sun NK,Huang SL,Chao CCK.Androgen receptor transcriptional activity and chromatin modifications on the ABCB1/MDR gene are critical for taxol resistance in ovarian cancer cells.J Cell Physiol2019;234:8760-75

[65]

Hu B,Weng Y.Therapeutic siRNA: state of the art.Signal Transduct Target Ther2020;5:101 PMCID:PMC7305320

[66]

Balwani M,Ventura P.Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria.N Engl J Med2020;382:2289-301

[67]

Adams D,O’Riordan WD.Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N Engl J Med2018;379:11-21

[68]

Yuan Y,Yu X.Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA.Acta Biomater2021;135:556-66

[69]

Koltai T.The complex relationship between multiple drug resistance and the tumor pH gradient: a review.Cancer Drug Resist2022;5:277-303 PMCID:PMC9255250

[70]

Xing S,Wang Y.Tumor immune microenvironment and immunotherapy in non-small cell lung cancer: update and new challenges.Aging Dis2022;13:1615-32 PMCID:PMC9662266

[71]

Shi B,Zhou Y,Xia D.Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water.J Am Chem Soc2016;138:80-3

[72]

Sa P,Dilnawaz F.Responsive role of nanomedicine in the tumor microenvironment and cancer drug resistance.Curr Med Chem2023;30:3335-55

[73]

Wu Y,Zhong X.A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy.Asian J Pharm Sci2022;17:206-18 PMCID:PMC9091603

[74]

He H,Zhou J.Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel.Biomaterials2013;34:5344-58

[75]

Shi Q,Liu M.Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells.Biomaterials2015;67:169-82

[76]

Zhou Z,Wang N,Li G.Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release.Int J Biol Macromol2018;116:911-9

[77]

Adeli F,Babazadeh M.Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery.J Nanobiotechnology2022;20:91 PMCID:PMC8864802

[78]

Yao X,Zeng L.Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics.Mater Horiz2019;6:846-70

[79]

Ren JM,Fu Q.Star Polymers.Chem Rev2016;116:6743-836

[80]

Song X,Zhu J.Thermoresponsive hydrogel induced by dual supramolecular assemblies and its controlled release property for enhanced anticancer drug delivery.Biomacromolecules2020;21:1516-27

[81]

Kost B,Cieślak M.Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers.Eur Polym J2019;120:109271

[82]

Zhou J,Yang J.Polymeric nanoparticles integrated from discrete organoplatinum(II) metallacycle by stepwise post-assembly polymerization for synergistic cancer therapy.Chem Mater2020;32:4564-73

[83]

Zhang Y,Chen H.Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy.Biomaterials2018;163:14-24

[84]

Pawar CS,Yadav P.Enhanced delivery of quercetin and doxorubicin using β-cyclodextrin polymer to overcome P-glycoprotein mediated multidrug resistance.Int J Pharm2023;635:122763

[85]

Zhang W,Chen J,Yan M.An amphiphilic water-soluble biphen[3]arene with a tunable lower critical solution temperature behavior.New J Chem2022;46:21453-7

[86]

Chen X,Owh C,Wu YL.Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers.Nanoscale2016;8:18876-81

[87]

Cheng H,Wang X.Hierarchically self-assembled supramolecular host-guest delivery system for drug resistant cancer therapy.Biomacromolecules2018;19:1926-38

[88]

Fan X,Wang X.Thermoresponsive supramolecular chemotherapy by “V”-shaped armed β-cyclodextrin star polymer to overcome drug resistance.Adv Healthc Mater2018;7:1701143

[89]

Li W,Li S.Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance.Mater Sci Eng C Mater Biol Appl2019;105:110047

[90]

Kumar R,Singh H.Revisiting fluorescent calixarenes: from molecular sensors to smart materials.Chem Rev2019;119:9657-721

[91]

Feng HT,Duan X.Substitution activated precise phototheranostics through supramolecular assembly of AIEgen and calixarene.J Am Chem Soc2020;142:15966-74

[92]

Cao S,Zhao Y.Pillararene/Calixarene-based systems for battery and supercapacitor applications.eScience2021;1:28-43

[93]

Gutsche CD.Calixarenes.Acc Chem Res1983;16:161-70

[94]

Wang J,Guo X.Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition.Adv Colloid Interface Sci2019;269:187-202

[95]

Zhou J,Zhang Z.A cationic water-soluble biphen[3]arene: synthesis, host-guest complexation and fabrication of a supra-amphiphile.RSC Adv2016;6:77179-83

[96]

Zhou J,Huang F.Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future.Chem Soc Rev2017;46:7021-53

[97]

Chen C,Tian HW,Guo DS.Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery.Angew Chem Int Ed Engl2020;59:10008-12

[98]

Zhang Z,Li Q.Design of calixarene-based ICD inducer for efficient cancer immunotherapy.Adv Funct Mater2023;33:2213967

[99]

Xu L,Wang Y.Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo.Nano Res2022;15:7295-303

[100]

Liu Q,Zheng Y.Calixarene-embedded nanoparticles for interference-free gene-drug combination cancer therapy.Small2021;17:2006223

[101]

Fan X.Development of calixarene-based drug nanocarriers.J Mol Liq2021;325:115246

[102]

Rahimi M,Noruzi EB.Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells.Int J Nanomedicine2019;14:2619-36 PMCID:PMC6472283

[103]

Tew KD.Glutathione-associated enzymes in anticancer drug resistance.Cancer Res2016;76:7-9

[104]

Cheng X,Ran HH,Wu FG.Glutathione-depleting nanomedicines for synergistic cancer therapy.ACS Nano2021;15:8039-68

[105]

Xiao X,Zong Q,Dong Y.Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal.Biomaterials2021;270:120649

[106]

Gorrini C.Glutathione metabolism: an achilles’ heel of ARID1A-deficient tumors.Cancer Cell2019;35:161-3

[107]

Xiong Y,Li Z.Engineering nanomedicine for glutathione depletion-augmented cancer therapy.Chem Soc Rev2021;50:6013-41

[108]

Ding Y,Wu M.Glutathione-mediated nanomedicines for cancer diagnosis and therapy.Chem Eng J2021;426:128880

[109]

Dai X,Liao C,Yu Y.A nanodrug to combat cisplatin-resistance by protecting cisplatin with p-sulfonatocalix[4]arene and regulating glutathione S-transferases with loaded 5-fluorouracil.Chem Commun2019;55:7199-202

[110]

Jin P,Zhou L.Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management.J Hematol Oncol2022;15:97 PMCID:PMC9290242

[111]

Yu G,Li Y.A pillar[5]arene-based [2]rotaxane lights up mitochondria.Chem Sci2016;7:3017-24 PMCID:PMC6003608

[112]

Sansone P,Kurelac I.Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer.Proc Natl Acad Sci U S A2017;114:E9066-75

[113]

Luo X,Su L.Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy.Angew Chem Int Ed Engl2021;60:1403-10

[114]

Nair JB,Arya JS,Sujai PT.Elucidating a thermoresponsive multimodal photo-chemotherapeutic nanodelivery vehicle to overcome the barriers of doxorubicin therapy.ACS Appl Mater Interfaces2020;12:43365-79

[115]

Mukhopadhyay RD.Cucurbituril curiosities.Nat Chem2023;15:438

[116]

Hu JH,Redshaw C,Xiao X.Cucurbit[n]uril-based supramolecular hydrogels: synthesis, properties and applications.Coord Chem Rev2023;489:215194

[117]

Ghosh SK,Ko YH.Superacid-mediated functionalization of hydroxylated cucurbit[n]urils.J Am Chem Soc2019;141:17503-6

[118]

Fahmy SA,Mahdy NK,Meselhy MR.Enhanced antioxidant, antiviral, and anticancer activities of the extract of fermented egyptian rice bran complexed with hydroxypropyl-β-cyclodextrin.ACS Omega2022;7:19545-54 PMCID:PMC9202066

[119]

Wu D,Yang J.Supramolecular nanomedicine constructed from cucurbit[8]uril-based amphiphilic brush copolymer for cancer therapy.ACS Appl Mater Interfaces2017;9:44392-401

[120]

Wang Z,Yang K,Wang R.Cucurbituril-based supramolecular polymers for biomedical applications.Angew Chem Int Ed Engl2022;61:e202206763

[121]

You Y,Guo B.Measuring binding constants of cucurbituril-based host-guest interactions at the single-molecule level with nanopores.ACS Sens2019;4:774-9

[122]

Shukla S,Sood AK,Batra S.Supramolecular chemotherapy with cucurbit[n]urils as encapsulating hosts.ACS Appl Bio Mater2023;6:2089-101

[123]

Redondo-Gómez C,Mata A.Peptide amphiphile hydrogels based on homoternary cucurbit[8]uril host-guest complexes.Bioconjug Chem2022;33:111-20

[124]

Barooah N,Bhasikuttan AC.Cucurbituril-based supramolecular assemblies: prospective on drug delivery, sensing, separation, and catalytic applications.Langmuir2022;38:6249-64

[125]

Liu Z,Liu Y.Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications.Acc Chem Res2022;55:3417-29

[126]

Li Q,Zhou J,Shao L.Barium cation-responsive supra-amphiphile constructed by a new twisted cucurbit[15]uril/paraquat recognition motif in water.Org Chem Front2018;5:1940-4

[127]

Alabrahim OAA,Azzazy HME.Stimuli-responsive cucurbit[n]uril-based supramolecular nanocarriers for delivery of chemotherapeutics.ACS Appl Nano Mater2023;6:3139-58

[128]

Yu Q,Lin FC,Zink JI.Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms.ACS Nano2020;14:5926-37

[129]

Safa AR.Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces.Cancer Drug Resist2022;5:850-72 PMCID:PMC9771762

[130]

Neophytou CM,Erin N.Apoptosis deregulation and the development of cancer multi-drug resistance.Cancers2021;13:4363 PMCID:PMC8430856

[131]

Sun M,Fan Z,Du J.Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis.Biomaterials2020;257:120252

[132]

Janzen DM,Salehi JA.Retraction note: an apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer.Nat Commun2020;11:2218 PMCID:PMC7192922

[133]

Rainho MA,de Amorim ÍSS,Thole AA.Mitochondria in colorectal cancer stem cells - a target in drug resistance.Cancer Drug Resist2023;6:273-83 PMCID:PMC10344721

[134]

Chen W,Chu B,Qian Z.Mitochondrial surface engineering for multidrug resistance reversal.Nano Lett2019;19:2905-13

[135]

Zhou J,Shao L,Yu G.Host-guest interaction enhanced aggregation-induced emission and its application in cell imaging.Chem Commun2016;52:5749-52

[136]

Dai XY,Yu Q.In situ coassembly induced mitochondrial aggregation activated drug-resistant tumor treatment.J Med Chem2022;65:7363-70

[137]

Kroll T,Smits SHJ.Structure and function of hepatobiliary ATP binding cassette transporters.Chem Rev2021;121:5240-88

[138]

Goebel J,Hrycyna CA.The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors.Cancer Drug Resist2021;4:784-804 PMCID:PMC8730335

[139]

Wang H,Yi Y.Self-motivated supramolecular combination chemotherapy for overcoming drug resistance based on acid-activated competition of host-guest interactions.CCS Chem2021;3:1413-25

[140]

Zhao T,Fu L.Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response.Cancer Drug Resist2022;5:436-50 PMCID:PMC9255244

[141]

Brennan CA.Fusobacterium nucleatum - symbiont, opportunist and oncobacterium.Nat Rev Microbiol2019;17:156-66 PMCID:PMC6589823

[142]

Wang N.Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer.Trends Microbiol2023;31:159-72

[143]

Gmeiner WH.Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects.Cancer Drug Resist2023;6:257-72 PMCID:PMC10344727

[144]

Yan X,Chen Q.Construction of size-transformable supramolecular nano-platform against drug-resistant colorectal cancer caused by Fusobacterium nucleatum.Chem Eng J2022;450:137605

[145]

Ogoshi T,Fujinami S,Nakamoto Y.para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property.J Am Chem Soc2008;130:5022-3

[146]

Sun J,Li Q,Yang J.Acid/base-controllable FRET and self-assembling systems fabricated by rhodamine B functionalized pillar[5]arene-based host-guest recognition motifs.Org Lett2018;20:365-8

[147]

Yan M.Pillararene-based supramolecular polymers for cancer therapy.Molecules2023;28:1470 PMCID:PMC9919256

[148]

Song N,Yamagishi T,Ogoshi T.Molecular-scale porous materials based on pillar[n]arenes.Chem2018;4:2029-53

[149]

Wang J,Cen M.GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy.J Nanobiotechnology2022;20:33 PMCID:PMC8753913

[150]

Wang C,Dong J.Pillararene-based supramolecular vesicles for stimuli-responsive drug delivery.Chemistry2022;28:e202202050

[151]

Zhu W,Zhou J,Sheng X.Highly selective removal of heterocyclic impurities from toluene by nonporous adaptive crystals of perethylated pillar[6]arene.Mater Chem Front2020;4:2325-9

[152]

Wang M,Yang S.Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes.Mater Today Chem2022;24:100919

[153]

Yang W,Chen J.Mono-functionalized pillar[n]arenes: syntheses, host-guest properties and applications.Chinese Chem Lett2024;35:108740

[154]

Wang Y,Wang J.Pillar[5]arene-derived covalent organic materials with pre-encoded molecular recognition for targeted and synergistic cancer photo- and chemotherapy.Chem Commun2022;58:1689-92

[155]

Zhou J,Shao L,Huang F.A water-soluble biphen[3]arene: synthesis, host-guest complexation, and application in controllable self-assembly and controlled release.Chem Commun2015;51:4188-91

[156]

Zhou L,Liu C,Zhao Y.Pillar[n]arene-based polymeric systems for biomedical applications.Coord Chem Rev2023;491:215260

[157]

Li Q,Ning L,Mu Y.Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)-pillar[5]arene.Small2019;15:1804678

[158]

Liu H,Yan X.A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer.J Mater Chem B2021;9:9594-605

[159]

Chang Y,Wei P.Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery.Angew Chem Int Ed Engl2014;53:13126-30

[160]

Wang M,Li E,Li Q.Separation of monochlorotoluene isomers by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene.J Am Chem Soc2019;141:17102-6

[161]

Wang Y,Feng W.Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications.J Mater Chem B2019;7:7656-75

[162]

Liu X,Wang Y.Dual-responsive bola-type supra-amphiphile constructed from water-soluble pillar[5]arene and naphthalimide-containing amphiphile for intracellular drug delivery.ACS Appl Mater Interfaces2017;9:4843-50

[163]

Wang M,Li E,Zhou J.Vapochromic behaviors of a solid-state supramolecular polymer based on exo-wall complexation of perethylated pillar[5]arene with 1,2,4,5-tetracyanobenzene.Angew Chem Int Ed Engl2021;60:8115-20

[164]

Yang K,Chao S.A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy.Chem Commun2018;54:5911-4

[165]

Bai Y,Yang J,Shang Q.Supramolecular self-assemblies based on water-soluble pillar[6]arene and drug-drug conjugates for the combination of chemotherapy.Colloid Surface B2022;217:112606

[166]

Yu G,Chi X.Pillar[10]arene-based size-selective host-guest complexation and its application in tuning the LCST behavior of a thermoresponsive polymer.Macromol Rapid Commun2015;36:23-30

[167]

Shao W,Sun G,Zhu JJ.Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy.Chem Commun2018;54:9462-5

[168]

Liu Y,Li P,Ma D.Cross-linked pillar[6]arene nanosponges fabricated by the use of a supra-amphiphilic template: cargo encapsulation and overcoming multidrug resistance.ACS Appl Mater Interfaces2020;12:7974-83

[169]

Zhou J,Diao G.Synthesis of the first amphiphilic pillar[6]arene and its enzyme-responsive self-assembly in water.Chem Commun2014;50:11954-6

[170]

Yu G,Shen J,Huang F.Cationic pillar[6]arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment.Chem Sci2016;7:4073-8

[171]

Yao X,Xu J,Yang W.Novel gas-based nanomedicines for cancer therapy.VIEW2022;3:20200185

[172]

Deng Y,Chen X,Ji J.ATP suppression by pH-activated mitochondria-targeted delivery of nitric oxide nanoplatform for drug resistance reversal and metastasis inhibition.Small2020;16:2001747

[173]

Zhou J,Hua B,Zhang Z.The synthesis, structure, and molecular recognition properties of a [2]calix[1]biphenyl-type hybrid[3]arene.Chem Commun2016;52:1622-4

[174]

Ding Y,Zhu L.Nitric oxide-containing supramolecular polypeptide nanomedicine based on [2]biphenyl-extended-pillar[6]arenes for drug resistance reversal.J Mater Chem B2022;10:6181-6

[175]

Valverde MA,Sepúlveda FV,Hyde SC.Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein.Nature1992;355:830-3

[176]

Gill DR,Higgins CF,Mintenig GM.Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein.Cell1992;71:23-32

[177]

Yang K,Yang M,Pei Y.Supramolecular nanoprodrug based on a chloride channel blocker and glycosylated pillar[5]arenes for targeted chemoresistance cancer therapy.Chem Commun2023;59:3779-82

[178]

van Waardenburg RCAM, Yang ES. Targeting DNA repair pathways to overcome cancer drug resistance.Cancer Drug Resist2021;4:837-41 PMCID:PMC8443189

[179]

Nickoloff JA,Sharma N.Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy.Cancer Drug Resist2021;4:244-63 PMCID:PMC8323830

[180]

Yang M,Gao B.A supramolecular nano-delivery system based on AIE PARP inhibitor prodrug and glycosylated pillar[5]arene for drug-resistance therapy.Chem Commun2022;58:11147-50

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/