Unlocking antitumor immunity with adenosine receptor blockers

Victoria A. Remley , Joel Linden , Todd W. Bauer , Julien Dimastromatteo

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (4) : 748 -67.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (4) :748 -67. DOI: 10.20517/cdr.2023.63
review-article

Unlocking antitumor immunity with adenosine receptor blockers

Author information +
History +
PDF

Abstract

Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.

Keywords

Immunotherapy / adenosine / adenosine receptors / adenosine A2A receptors (A2AR) / adenosine A2B receptors (A2BR) / tumor cells / immune cells / tumor microenvironment

Cite this article

Download citation ▾
Victoria A. Remley, Joel Linden, Todd W. Bauer, Julien Dimastromatteo. Unlocking antitumor immunity with adenosine receptor blockers. Cancer Drug Resistance, 2023, 6(4): 748-67 DOI:10.20517/cdr.2023.63

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fares CM,Drake CG,Hu-Lieskovan S.Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients?.Am Soc Clin Oncol Educ Book2019;39:147-64

[2]

Lewis C.Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies.Am J Pathol2005;167:627-35 PMCID:PMC1698733

[3]

Galon J.Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.Nat Rev Drug Discov2019;18:197-218

[4]

Rubin SJS,Gubatan J.The tumor immune microenvironment in pancreatic ductal adenocarcinoma: neither hot nor cold.Cancers2022;14:4236 PMCID:PMC9454892

[5]

Johnson A,O’Neill K.Tumor microenvironment immunosuppression: a roadblock to CAR T-cell advancement in solid tumors.Cells2022;11:3626 PMCID:PMC9688327

[6]

Nallanthighal S,Cheon DJ.The role of the extracellular matrix in cancer stemness.Front Cell Dev Biol2019;7:86 PMCID:PMC6624409

[7]

Croci DO,Rico MJ,Rabinovich GA.Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment.Cancer Immunol Immunother2007;56:1687-700

[8]

Huang X,Fu M. Polarizing macrophages in vitro. In: Rousselet G, editor. Macrophages. New York, NY: Springer New York; 2018. p. 119-26. Available from: http://link.springer.com/10.1007/978-1-4939-7837-3_12. [Last accessed on 18 Oct 2023]

[9]

Solinas G,Mantovani A.Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation.J Leukoc Biol2009;86:1065-73

[10]

Qian BZ.Macrophage diversity enhances tumor progression and metastasis.Cell2010;141:39-51 PMCID:PMC4994190

[11]

Facciabene A,Coukos G.T-regulatory cells: key players in tumor immune escape and angiogenesis.Cancer Res2012;72:2162-71 PMCID:PMC3342842

[12]

Choueiry F,Shakya R.CD200 promotes immunosuppression in the pancreatic tumor microenvironment.J Immunother Cancer2020;8:e000189 PMCID:PMC7312341

[13]

Shi R,Miao H.Metabolism in tumor microenvironment: implications for cancer immunotherapy.MedComm2020;1:47-68 PMCID:PMC8489668

[14]

Hatfield SM,Lukashev D.Immunological mechanisms of the antitumor effects of supplemental oxygenation.Sci Transl Med2015;7:277ra30 PMCID:PMC4641038

[15]

Gallina G,Serafini P.Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells.J Clin Invest2006;116:2777-90 PMCID:PMC1578632

[16]

Zea AH,Atkins MB.Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion.Cancer Res2005;65:3044-8

[17]

Mundy-Bosse BL,Jaime-Ramirez AC.Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice.Cancer Res2011;71:5101-10 PMCID:PMC3148319

[18]

Chouaib S,Kosmatopoulos K.Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.Oncogene2017;36:439-45 PMCID:PMC5937267

[19]

Corbet C.Tumour acidosis: from the passenger to the driver’s seat.Nat Rev Cancer2017;17:577-93

[20]

Colegio OR,Szabo AL.Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.Nature2014;513:559-63 PMCID:PMC4301845

[21]

Hayes C,Davern M.The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.Cancer Lett2021;500:75-86

[22]

Leach DR,Allison JP.Enhancement of antitumor immunity by CTLA-4 blockade.Science1996;271:1734-6

[23]

Ishida Y,Shibahara K.Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death.EMBO J1992;11:3887-95 PMCID:PMC556898

[24]

Rizvi NA,Snyder A.Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.Science2015;348:124-8 PMCID:PMC4993154

[25]

Rizvi H,La K.Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing.J Clin Oncol2018;36:633-41 PMCID:PMC6075848

[26]

Strickland LN,Ruan W,Eltzschig HK.The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer.Front Immunol2023;14:1163585 PMCID:PMC10175829

[27]

Rudensky AY.Regulatory T cells and Foxp3.Immunol Rev2011;241:260-8 PMCID:PMC3077798

[28]

Yang L,Ren X.Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis.Cancer Cell2008;13:23-35

[29]

Noy R.Tumor-associated macrophages: from mechanisms to therapy.Immunity2014;41:49-61 PMCID:PMC4137410

[30]

Highfill SL,Giles AJ.Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy.Sci Transl Med2014;6:237ra67 PMCID:PMC6980372

[31]

Najafi M,Mortezaee K.Contribution of regulatory T cells to cancer: a review.J Cell Physiol2019;234:7983-93

[32]

Liu C,Xu C.BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice.Clin Cancer Res2013;19:393-403 PMCID:PMC4120472

[33]

Semenza GL.Oxygen sensing, homeostasis, and disease.N Engl J Med2011;365:537-47

[34]

Eltzschig HK,Hoffman E.HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia.J Exp Med2005;202:1493-505 PMCID:PMC2213326

[35]

Pugh CW.Regulation of angiogenesis by hypoxia: role of the HIF system.Nat Med2003;9:677-84

[36]

Eckle T,Grenz A.Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors.Circulation2007;115:1581-90

[37]

Zhang B.CD73 promotes tumor growth and metastasis.Oncoimmunology2012;1:67-70 PMCID:PMC3376970

[38]

Gao ZW,Zhang HZ.The roles of CD73 in cancer.Biomed Res Int2014;2014:460654 PMCID:PMC4121992

[39]

Allard B,Robson SC.The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets.Immunol Rev2017;276:121-44 PMCID:PMC5338647

[40]

Beavis PA,Milenkovski N.CD73: a potential biomarker for anti-PD-1 therapy.Oncoimmunology2015;4:e1046675 PMCID:PMC4589050

[41]

Giannone G,Genta S.Immuno-metabolism and microenvironment in cancer: key players for immunotherapy.Int J Mol Sci2020;21:4414 PMCID:PMC7352562

[42]

Linnemann C,Schurich A.Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.Immunology2009;128:e728-37 PMCID:PMC2753927

[43]

Csóka B,Koscsó B.Adenosine promotes alternative macrophage activation via A2A and A2B receptors.FASEB J2012;26:376-86 PMCID:PMC3250237

[44]

Antonioli L,Pacher P.Immunity, inflammation and cancer: a leading role for adenosine.Nat Rev Cancer2013;13:842-57

[45]

McColl SR,Dussault AA.Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils.FASEB J2006;20:187-9 PMCID:PMC2881301

[46]

Sahai E,Cukierman E.A framework for advancing our understanding of cancer-associated fibroblasts.Nat Rev Cancer2020;20:174-86 PMCID:PMC7046529

[47]

Fordyce C,Pickering C.DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions.Cancer Prev Res2010;3:190-201 PMCID:PMC2954106

[48]

Fordyce CA,Fessenden TB.Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes.Breast Cancer Res2012;14:R155 PMCID:PMC3786321

[49]

Fearon DT.The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance.Cancer Immunol Res2014;2:187-93

[50]

Albrengues J,Pons C.LIF mediates proinvasive activation of stromal fibroblasts in cancer.Cell Rep2014;7:1664-78

[51]

Albrengues J,Grasset E.Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts.Nat Commun2015;6:10204 PMCID:PMC4682161

[52]

Calvo F,Grande-Garcia A.Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts.Nat Cell Biol2013;15:637-46 PMCID:PMC3836234

[53]

Strell C,Jin SB.Impact of epithelial-stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ.J Natl Cancer Inst2019;111:983-95 PMCID:PMC6748730

[54]

Hirata E,Viros A.Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling.Cancer Cell2015;27:574-88 PMCID:PMC4402404

[55]

Hirata E.Tumor microenvironment and differential responses to therapy.Cold Spring Harb Perspect Med2017;7:a026781 PMCID:PMC5495051

[56]

Sun Y,Higano C.Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B.Nat Med2012;18:1359-68 PMCID:PMC3677971

[57]

McAndrews KM,Darpolor JK.Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer.Cancer Discov2022;12:1580-97 PMCID:PMC9399904

[58]

Vigano S,Irving M.Targeting adenosine in cancer immunotherapy to enhance T-cell function.Front Immunol2019;10:925 PMCID:PMC6562565

[59]

Allard B,Buisseret L.The adenosine pathway in immuno-oncology.Nat Rev Clin Oncol2020;17:611-29

[60]

Sidders B,Goodwin K.Adenosine signaling is prognostic for cancer outcome and has predictive utility for immunotherapeutic response.Clin Cancer Res2020;26:2176-87

[61]

Ahmed A.Targeting immunogenic cell death in cancer.Mol Oncol2020;14:2994-3006 PMCID:PMC7718954

[62]

Xia GQ,Wu X,Zhao N.The mechanism by which ATP regulates alcoholic steatohepatitis through P2X4 and CD39.Eur J Pharmacol2022;916:174729

[63]

Vijayan D,Teng MWL.Targeting immunosuppressive adenosine in cancer.Nat Rev Cancer2017;17:765

[64]

Marin-Acevedo JA,Lou Y.Next generation of immune checkpoint inhibitors and beyond.J Hematol Oncol2021;14:45 PMCID:PMC7977302

[65]

Sun C,Hao S.Adenosine-A2A receptor pathway in cancer immunotherapy.Front Immunol2022;13:837230 PMCID:PMC8977492

[66]

Sylvestre M,Pun SH.Progress on modulating tumor-associated macrophages with biomaterials.Adv Mater2020;32:e1902007 PMCID:PMC7098849

[67]

Gao J,Wang L.Shaping polarization of tumor-associated macrophages in cancer immunotherapy.Front Immunol2022;13:888713 PMCID:PMC9280632

[68]

Mantovani A,Sozzani S,Vecchi A.The chemokine system in diverse forms of macrophage activation and polarization.Trends Immunol2004;25:677-86

[69]

Nakao S,Tsutsumi-Miyahara C.Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth.J Clin Invest2005;115:2979-91 PMCID:PMC1257532

[70]

Fujimoto J,Khatun S,Tamaya T.Clinical implications of expression of interleukin-8 related to myometrial invasion with angiogenesis in uterine endometrial cancers.Ann Oncol2002;13:430-4

[71]

Murphy PS,Bhagwat SP.CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxin-conditioned tissue macrophages.Cell Death Differ2017;24:559-70 PMCID:PMC5344214

[72]

Yamaguchi H,Urade Y.Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.Elife2014;3:e02172 PMCID:PMC3963506

[73]

Köröskényi K,Pallai A.Involvement of adenosine A2A receptors in engulfment-dependent apoptotic cell suppression of inflammation.J Immunol2011;186:7144-55 PMCID:PMC3395167

[74]

Marciscano AE.The role of dendritic cells in cancer and anti-tumor immunity.Semin Immunol2021;52:101481 PMCID:PMC8545750

[75]

Albert ML,Bhardwaj N.Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs.Nature1998;392:86-9

[76]

Nirschl CJ,Izar B.IFNγ-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment.Cell2017;170:127-41.e15 PMCID:PMC5569303

[77]

Joffre O,Spörri R.Inflammatory signals in dendritic cell activation and the induction of adaptive immunity.Immunol Rev2009;227:234-47

[78]

Dunn GP,Ikeda H,Schreiber RD.Cancer immunoediting: from immunosurveillance to tumor escape.Nat Immunol2002;3:991-8

[79]

Gerhard GM,Messemaker M,Pittet MJ.Tumor-infiltrating dendritic cell states are conserved across solid human cancers.J Exp Med2021;218:e20200264 PMCID:PMC7754678

[80]

Dress RJ,Giladi A.Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage.Nat Immunol2019;20:852-64

[81]

Binnewies M,Pollack JL.Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity.Cell2019;177:556-71.e16 PMCID:PMC6954108

[82]

Oh SA,Cheung J.PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer.Nat Cancer2020;1:681-91

[83]

Mayoux M,Pulko V.Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy.Sci Transl Med2020;12:eaav7431

[84]

Ben Addi A,Hua X.Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A2B receptor.Eur J Immunol2008;38:1610-20

[85]

Novitskiy SV,Zaynagetdinov R.Adenosine receptors in regulation of dendritic cell differentiation and function.Blood2008;112:1822-31 PMCID:PMC2518889

[86]

Shimasaki N,Kamiya T.Expanded and armed natural killer cells for cancer treatment.Cytotherapy2016;18:1422-34

[87]

Kärre K,Piontek G.Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.Nature1986;319:675-8

[88]

Morvan MG.NK cells and cancer: you can teach innate cells new tricks.Nat Rev Cancer2016;16:7-19

[89]

Guillerey C,Smyth MJ.Targeting natural killer cells in cancer immunotherapy.Nat Immunol2016;17:1025-36

[90]

Raulet DH.Self-tolerance of natural killer cells.Nat Rev Immunol2006;6:520-31

[91]

Bauer S,Wu J.Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.Science1999;285:727-9

[92]

Gasser S,Brown EJ.The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor.Nature2005;436:1186-90 PMCID:PMC1352168

[93]

Barrow AD,Trifonov V.Natural killer cells control tumor growth by sensing a growth factor.Cell2018;172:534-48.e19 PMCID:PMC6684025

[94]

Delahaye NF,Martins I.Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors.Nat Med2011;17:700-7

[95]

Mlecnik B,Angell HK.Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients.Sci Transl Med2014;6:228ra37

[96]

López-Soto A,Smyth MJ.Control of metastasis by NK cells.Cancer Cell2017;32:135-54

[97]

O’Brien KL.Immunometabolism and natural killer cell responses.Nat Rev Immunol2019;19:282-90

[98]

Coudert JD,Tomasello E.Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells.Blood2005;106:1711-7

[99]

Raskovalova T,Sitkovsky M,Jackson EK.Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells.J Immunol2005;175:4383-91

[100]

Bastid J,Bonnefoy N.Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity.Cancer Immunol Res2015;3:254-65

[101]

Chatterjee D,Baehre H,Schmidt RE.Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells.Blood2014;123:594-5

[102]

Wallace KL.Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease.Blood2010;116:5010-20 PMCID:PMC3012594

[103]

Beavis PA,Paget C.Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors.Proc Natl Acad Sci U S A2013;110:14711-6 PMCID:PMC3767556

[104]

Burnstock G.Purinergic signalling and immune cells.Purinergic Signal2014;10:529-64 PMCID:PMC4272370

[105]

Dangaj D,Grimm AJ.Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors.Cancer Cell2019;35:885-900.e10 PMCID:PMC6961655

[106]

Duhen R,Samson KA.PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors.J Clin Invest2022;132:e156821 PMCID:PMC9197519

[107]

Addeo R,Merlino F,Caraglia M.CheckMate 141 trial: all that glitters is not gold.Expert Opin Biol Ther2019;19:169-71

[108]

van den Bulk J,Ruano D.Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4.Genome Med2019;11:87 PMCID:PMC6938004

[109]

Duhen T,Montler R.Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors.Nat Commun2018;9:2724 PMCID:PMC6045647

[110]

Aparicio T.PD-1 blockade in tumors with mismatch-repair deficiency.Colon Rectum2015;9:182-4

[111]

Le DT,Smith KN.Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017;357:409-13 PMCID:PMC5576142

[112]

Pauken KE.Overcoming T cell exhaustion in infection and cancer.Trends Immunol2015;36:265-76 PMCID:PMC4393798

[113]

Young A,Stagg J.Targeting cancer-derived adenosine: new therapeutic approaches.Cancer Discov2014;4:879-88

[114]

Antonioli L,Blandizzi C,Haskó G.Adenosine signaling and the immune system: when a lot could be too much.Immunol Lett2019;205:9-15

[115]

Fredholm BB.Adenosine, an endogenous distress signal, modulates tissue damage and repair.Cell Death Differ2007;14:1315-23

[116]

Robson SC,Sun X,Dwyer K.Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation.Semin Thromb Hemost2005;31:217-33

[117]

Picher M,Hirsh AJ,Boucher RC.Ecto 5'-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways.J Biol Chem2003;278:13468-79

[118]

Yegutkin GG.Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade.Biochim Biophys Acta2008;1783:673-94

[119]

Mittal D,Barkauskas D.Adenosine 2B receptor expression on cancer cells promotes metastasis.Cancer Res2016;76:4372-82

[120]

Costa A,Scholer-Dahirel A.Fibroblast heterogeneity and immunosuppressive environment in human breast cancer.Cancer Cell2018;33:463-79.e10

[121]

Turcotte M,Pommey S.CD73 is associated with poor prognosis in high-grade serous ovarian cancer.Cancer Res2015;75:4494-503

[122]

Yu M,Huang L.CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint.Nat Commun2020;11:515 PMCID:PMC6981126

[123]

Maj T,Crespo J.Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor.Nat Immunol2017;18:1332-41 PMCID:PMC5770150

[124]

Limagne E,Thibaudin M.Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen.Cancer Res2016;76:5241-52

[125]

Chalmin F,Bruchard M.Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression.Immunity2012;36:362-73

[126]

Hay CM,Huang Q.Targeting CD73 in the tumor microenvironment with MEDI9447.Oncoimmunology2016;5:e1208875 PMCID:PMC5007986

[127]

Allard B,Darcy PK.Immunosuppressive activities of adenosine in cancer.Curr Opin Pharmacol2016;29:7-16

[128]

Allard B,Spring K,Royal I.Anti-CD73 therapy impairs tumor angiogenesis.Int J Cancer2014;134:1466-73

[129]

Feng L,Csizmadia E.Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate.Neoplasia2011;13:206-16 PMCID:PMC3050864

[130]

Jackson SW,Wu Y.Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice.Am J Pathol2007;171:1395-404 PMCID:PMC1988887

[131]

Sun X,Gao W.CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice.Gastroenterology2010;139:1030-40 PMCID:PMC2930043

[132]

Künzli BM,Giese T.Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease.Am J Physiol Gastrointest Liver Physiol2007;292:G223-30

[133]

Zhang B,Li FS.High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma.Tumour Biol2015;36:9411-9

[134]

Borea PA,Merighi S.Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects?.Trends Pharmacol Sci2016;37:419-34

[135]

Huang Y,Fan Y.Inhibition of the adenosinergic pathway: the indispensable part of oncological therapy in the future.Purinergic Signal2019;15:53-67 PMCID:PMC6439062

[136]

Vecchio EA,May LT.The adenosine A2B G protein-coupled receptor: recent advances and therapeutic implications.Pharmacol Ther2019;198:20-33

[137]

Ohta A,Ohta A,Madasu M.The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway.Front Immunol2012;3:190 PMCID:PMC3389649

[138]

Leone RD,Oh MH.Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models.Cancer Immunol Immunother2018;67:1271-84

[139]

Zarek PE,Lutz ER.A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells.Blood2008;111:251-9 PMCID:PMC2200810

[140]

Ryzhov S,Zaynagetdinov R.Host A2B adenosine receptors promote carcinoma growth.Neoplasia2008;10:987-95 PMCID:PMC2517644

[141]

Merighi S,Mirandola P.Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells.Mol Pharmacol2007;72:395-406

[142]

Wilson JM,Black SG.The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.J Immunol2011;186:6746-52 PMCID:PMC3365485

[143]

Taylor CT.Regulation of immunity and inflammation by hypoxia in immunological niches.Nat Rev Immunol2017;17:774-85 PMCID:PMC5799081

[144]

Palazon A,Nizet V.HIF transcription factors, inflammation, and immunity.Immunity2014;41:518-28 PMCID:PMC4346319

[145]

Xia C,To KKW.CD39/CD73/A2AR pathway and cancer immunotherapy.Mol Cancer2023;22:44 PMCID:PMC9979453

[146]

Fong L,Powderly JD.Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer.Cancer Discov2020;10:40-53 PMCID:PMC6954326

[147]

Sitkovsky MV.Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer.Cancer Discov2020;10:16-9

[148]

Bhalani DV,Kumar A.Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022;10:2055 PMCID:PMC9495787

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/