A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer

Hiroshi Kobayashi , Chiharu Yoshimoto , Sho Matsubara , Hiroshi Shigetomi , Shogo Imanaka

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) : 547 -66.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) :547 -66. DOI: 10.20517/cdr.2023.49
review-article

A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer

Author information +
History +
PDF

Abstract

Cancer cells adapt to environmental changes and alter their metabolic pathways to promote survival and proliferation. Metabolic reprogramming not only allows tumor cells to maintain a reduction-oxidation balance by rewiring resources for survival, but also causes nutrient addiction or metabolic vulnerability. Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides. Excess iron in ovarian cancer amplifies free oxidative radicals and drives the Fenton reaction, thereby inducing ferroptosis. However, ovarian cancer is characterized by ferroptosis resistance. Therefore, the induction of ferroptosis is an exciting new targeted therapy for ovarian cancer. In this review, potential metabolic pathways targeting ferroptosis were summarized to promote anticancer effects, and current knowledge and future perspectives on ferroptosis for ovarian cancer therapy were discussed. Two therapeutic strategies were highlighted in this review: directly inducing the ferroptosis pathway and targeting metabolic vulnerabilities that affect ferroptosis. The overexpression of SLC7A11, a cystine/glutamate antiporter SLC7A11 (also known as xCT), is involved in the suppression of ferroptosis. xCT inhibition by ferroptosis inducers (e.g., erastin) can promote cell death when carbon as an energy source of glucose, glutamine, or fatty acids is abundant. On the contrary, xCT regulation has been reported to be highly dependent on the metabolic vulnerability. Drugs that target intrinsic metabolic vulnerabilities (e.g., GLUT1 inhibitors, PDK4 inhibitors, or glutaminase inhibitors) predispose cancer cells to death, which is triggered by decreased nicotinamide adenine dinucleotide phosphate generation or increased reactive oxygen species accumulation. Therefore, therapeutic approaches that either directly inhibit the xCT pathway or target metabolic vulnerabilities may be effective in overcoming ferroptosis resistance. Real-time monitoring of changes in metabolic pathways may aid in selecting personalized treatment modalities. Despite the rapid development of ferroptosis-inducing agents, therapeutic strategies targeting metabolic vulnerability remain in their infancy. Thus, further studies must be conducted to comprehensively understand the precise mechanism linking metabolic rewiring with ferroptosis.

Keywords

Ferroptosis / glutaminolysis / glycolysis / metabolic vulnerability / ovarian cancer / pentose phosphate pathway

Cite this article

Download citation ▾
Hiroshi Kobayashi, Chiharu Yoshimoto, Sho Matsubara, Hiroshi Shigetomi, Shogo Imanaka. A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer. Cancer Drug Resistance, 2023, 6(3): 547-66 DOI:10.20517/cdr.2023.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Fuchs HE.Cancer statistics, 2022.CA Cancer J Clin2022;72:7-33

[2]

Kuroki L.Treatment of epithelial ovarian cancer.BMJ2020;371:m3773

[3]

Koshiyama M,Konishi I.Recent concepts of ovarian carcinogenesis: type I and type II.Biomed Res Int2014;2014:934261 PMCID:PMC4017729

[4]

Zhang X,Yin H.Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy.Theranostics2019;9:1096-114 PMCID:PMC6401400

[5]

Uberti F,Lattuada D.Protective effects of vitamin D3 on fimbrial cells exposed to catalytic iron damage.J Ovarian Res2016;9:34 PMCID:PMC4912710

[6]

Chen Y,Jing P.Linoleic acid-glucosamine hybrid for endogenous iron-activated ferroptosis therapy in high-grade serous ovarian cancer.Mol Pharm2022;19:3187-98

[7]

Basuli D,Deng Z.Iron addiction: a novel therapeutic target in ovarian cancer.Oncogene2017;36:4089-99 PMCID:PMC5540148

[8]

Atiya HI,Goldfeld E.Endometriosis-associated mesenchymal stem cells support ovarian clear cell carcinoma through iron regulation.Cancer Res2022;82:4680-93 PMCID:PMC9755968

[9]

Vela D.Iron in the tumor microenvironment.Adv Exp Med Biol2020;1259:39-51

[10]

Boroughs LK.Metabolic pathways promoting cancer cell survival and growth.Nat Cell Biol2015;17:351-9 PMCID:PMC4939711

[11]

Zhou L,Chai W.Dichloroacetic acid upregulates apoptosis of ovarian cancer cells by regulating mitochondrial function.Onco Targets Ther2019;12:1729-39 PMCID:PMC6419601

[12]

Kobayashi H.Recent advances in understanding the metabolic plasticity of ovarian cancer: a systematic review.Heliyon2022;8:e11487 PMCID:PMC9668530

[13]

Iessi E,Cittadini C.Targeting the interplay between cancer metabolic reprogramming and cell death pathways as a viable therapeutic path.Biomedicines2021;9:1942 PMCID:PMC8698563

[14]

Yao X,Fang D.Emerging roles of energy metabolism in ferroptosis regulation of tumor cells.Adv Sci2021;8:e2100997 PMCID:PMC8596140

[15]

Lin CC.Ferroptosis of epithelial ovarian cancer: genetic determinants and therapeutic potential.Oncotarget2020;11:3562-70 PMCID:PMC7533070

[16]

Koppula P,Zhuang L.Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer.Cancer Commun2018;38:12 PMCID:PMC5993148

[17]

Vander Heiden MG,Thompson CB.Understanding the Warburg effect: the metabolic requirements of cell proliferation.Science2009;324:1029-33 PMCID:PMC2849637

[18]

Song X,Kuang F.PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.Cell Rep2021;34:108767

[19]

Liu J,Tang D.Metabolic checkpoint of ferroptosis resistance.Mol Cell Oncol2021;8:1901558 PMCID:PMC8128190

[20]

Dang CV.Oncogenic alterations of metabolism.Trends Biochem Sci1999;24:68-72

[21]

Pavlova NN.The emerging hallmarks of cancer metabolism.Cell Metab2016;23:27-47 PMCID:PMC4715268

[22]

Lu J,Cai Q.The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.Cancer Lett2015;356:156-64 PMCID:PMC4195816

[23]

Duraj T,Seyfried TN,Ayuso-Sacido A.Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle.Mol Metab2021;54:101389 PMCID:PMC8637646

[24]

McFate T,Lu H.Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells.J Biol Chem2008;283:22700-8 PMCID:PMC2504897

[25]

Li S,Fan J.Glutamine metabolism in breast cancer and possible therapeutic targets.Biochem Pharmacol2023;210:115464

[26]

Koppula P,Zhang Y.KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition.iScience2021;24:102649 PMCID:PMC8193145

[27]

Toyokuni S,Yamashita K,Akatsuka S.Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis.Free Radic Biol Med2017;108:610-26

[28]

Akins NS,Le HV.Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer.Curr Top Med Chem2018;18:494-504 PMCID:PMC6110043

[29]

Jaggupilli A,Nguyen K.Metabolic stress induces GD2+ cancer stem cell-like phenotype in triple-negative breast cancer.Br J Cancer2022;126:615-27 PMCID:PMC8854435

[30]

Yang J,Cheng S.Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer.Front Genet2022;13:1094474 PMCID:PMC9849594

[31]

Krstic J,Prokesch A.Combination strategies to target metabolic flexibility in cancer.Int Rev Cell Mol Biol2022;373:159-97

[32]

Barutello G,Gasparetto A.Immunotherapy against the cystine/glutamate antiporter xCT improves the efficacy of APR-246 in preclinical breast cancer models.Biomedicines2022;10:2843 PMCID:PMC9688020

[33]

Reckzeh ES,Schwalfenberg M.Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth.Cell Chem Biol2019;26:1214-28.e25

[34]

Alarcón-Veleiro C,Lucio-Gallego S.Study of ferroptosis transmission by small extracellular vesicles in epithelial ovarian cancer cells.Antioxidants2023;12:183 PMCID:PMC9854685

[35]

Zhao H,Shang H.Ferroptosis: A new promising target for ovarian cancer therapy.Int J Med Sci2022;19:1847-55 PMCID:PMC9682507

[36]

Kreuzaler P,Segal J.Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion.Mol Metab2020;33:83-101 PMCID:PMC7056924

[37]

Vander Heiden MG.Understanding the intersections between metabolism and cancer biology.Cell2017;168:657-69 PMCID:PMC5329766

[38]

Yu L,Zhu G.Emerging roles of the tumor suppressor p53 in metabolism.Front Cell Dev Biol2021;9:762742 PMCID:PMC8806078

[39]

Galluzzi L,Aaronson SA.Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ2018;25:486-541 PMCID:PMC5864239

[40]

Galluzzi L.Immunology of cell death in cancer immunotherapy.Cells2021;10:1208 PMCID:PMC8156735

[41]

Zhan S,Siu MKY.New insights into ferroptosis initiating therapies (FIT) by targeting the rewired lipid metabolism in ovarian cancer peritoneal metastases.Int J Mol Sci2022;23:15263 PMCID:PMC9737695

[42]

Tan Z,Sun W,Jia Y.Current progress of ferroptosis study in ovarian cancer.Front Mol Biosci2022;9:966007 PMCID:PMC9458863

[43]

Zhang C.Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer.Front Immunol2022;13:920059 PMCID:PMC9361070

[44]

Li L,Hou M.Ferroptosis in ovarian cancer: a novel therapeutic strategy.Front Oncol2021;11:665945 PMCID:PMC8117419

[45]

Asif K,Rahman MM.Iron nitroprusside as a chemodynamic agent and inducer of ferroptosis for ovarian cancer therapy.J Mater Chem B2023;11:3124-35

[46]

Koppula P,Gan B.Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy.Protein Cell2021;12:599-620 PMCID:PMC8310547

[47]

Fang X,Wang H.Loss of cardiac ferritin h facilitates cardiomyopathy via Slc7a11-mediated ferroptosis.Circ Res2020;127:486-501

[48]

Liu X,Zhuang L,Gan B.NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation.Genes Dis2021;8:731-45 PMCID:PMC8427322

[49]

Cao JY.Mechanisms of ferroptosis.Cell Mol Life Sci2016;73:2195-209 PMCID:PMC4887533

[50]

Bezawork-Geleta A,Watt MJ.Lipid droplets and ferroptosis as new players in brain cancer glioblastoma progression and therapeutic resistance.Front Oncol2022;12:1085034 PMCID:PMC9797845

[51]

Didžiapetrienė J,Smailytė G,Stukas R.Significance of blood serum catalase activity and malondialdehyde level for survival prognosis of ovarian cancer patients.Medicina2014;50:204-8

[52]

Stockwell BR,Bayir H.Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017;171:273-85 PMCID:PMC5685180

[53]

Tonelli C,Tuveson DA.Transcriptional regulation by Nrf2.Antioxid Redox Signal2018;29:1727-45 PMCID:PMC6208165

[54]

Wolpaw AJ.Exploiting metabolic vulnerabilities of cancer with precision and accuracy.Trends Cell Biol2018;28:201-12 PMCID:PMC5818322

[55]

Lee H,Zhang Y.Energy-stress-mediated AMPK activation inhibits ferroptosis.Nat Cell Biol2020;22:225-34 PMCID:PMC7008777

[56]

Liu X,Zhang Y.Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.Nat Cell Biol2023;25:404-14 PMCID:PMC10027392

[57]

Goji T,Negishi M.Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation.J Biol Chem2017;292:19721-32 PMCID:PMC5712613

[58]

Shin CS,Watrous JD.The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility.Nat Commun2017;8:15074 PMCID:PMC5413954

[59]

Kanska J,Taylor-Harding B.Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT.Oncotarget2017;8:26200-20 PMCID:PMC5432250

[60]

Garcia D.AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance.Mol Cell2017;66:789-800 PMCID:PMC5553560

[61]

Kang R,Zeh HJ,Tang D.BECN1 is a new driver of ferroptosis.Autophagy2018;14:2173-5 PMCID:PMC6984768

[62]

Huang CY,Chen G,Wang CY.SHP-1/STAT3-signaling-axis-regulated coupling between BECN1 and SLC7A11 contributes to sorafenib-induced ferroptosis in hepatocellular carcinoma.Int J Mol Sci2022;23:11092 PMCID:PMC9570040

[63]

Tan Y,Mei R.HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis.Cell Death Dis2022;13:319 PMCID:PMC8993870

[64]

Song X,Chen P.AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc- activity.Curr Biol2018;28:2388-99.e5 PMCID:PMC6081251

[65]

Hardie DG.Molecular pathways: is AMPK a friend or a foe in cancer?.Clin Cancer Res2015;21:3836-40 PMCID:PMC4558946

[66]

Yung MMH,Ngan HYS,Chan KKL.Orchestrated action of AMPK activation and combined VEGF/PD-1 blockade with lipid metabolic tunning as multi-target therapeutics against ovarian cancers.Int J Mol Sci2022;23:6857 PMCID:PMC9224484

[67]

Altman BJ,Dang CV.From Krebs to clinic: glutamine metabolism to cancer therapy.Nat Rev Cancer2016;16:619-34

[68]

Yang C,Hensley CT.Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.Mol Cell2014;56:414-24 PMCID:PMC4268166

[69]

Gentric G,Mieulet V.PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers.Cell Metab2019;29:156-73.e10 PMCID:PMC6331342

[70]

Zong WX,White E.Mitochondria and cancer.Mol Cell2016;61:667-76 PMCID:PMC4779192

[71]

Gao M,Zhu J.Role of mitochondria in ferroptosis.Mol Cell2019;73:354-63.e3 PMCID:PMC6338496

[72]

Lahiguera Á,Figueras A.Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors.EMBO Mol Med2020;12:e11217 PMCID:PMC7278557

[73]

Delgir S,Ilkhani K,Seif F.The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer.Mutat Res Rev Mutat Res2021;787:108366

[74]

Kim JW,Semenza GL.HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.Cell Metab2006;3:177-85

[75]

Venturoli C,Curtarello M.Genetic perturbation of pyruvate dehydrogenase kinase 1 modulates growth, angiogenesis and metabolic pathways in ovarian cancer xenografts.Cells2021;10:325 PMCID:PMC7915933

[76]

Zhang Y,Zhou Z.p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides.Int J Nanomedicine2021;16:283-96 PMCID:PMC7811475

[77]

Luo EF,Qin YH.Role of ferroptosis in the process of diabetes-induced endothelial dysfunction.World J Diabetes2021;12:124-37 PMCID:PMC7839168

[78]

Sonenberg N.Regulation of translation initiation in eukaryotes: mechanisms and biological targets.Cell2009;136:731-45 PMCID:PMC3610329

[79]

Romagnoli A,D’Agostino M,Marino DD.Targeting mTOR and eIF4E: a feasible scenario in ovarian cancer therapy.Cancer Drug Resist2021;4:596-606 PMCID:PMC9094073

[80]

Romagnoli A,Ardiccioni C.Control of the eIF4E activity: structural insights and pharmacological implications.Cell Mol Life Sci2021;78:6869-85 PMCID:PMC8558276

[81]

Maracci C,Romagnoli A,Perego P.The mTOR/4E-BP1/eIF4E signalling pathway as a source of cancer drug targets.Curr Med Chem2022;29:3501-29

[82]

Dong H,Sun Q.Inhibit ALDH3A2 reduce ovarian cancer cells survival via elevating ferroptosis sensitivity.Gene2023;876:147515

[83]

Chen X,Yu C.A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis.Nat Commun2022;13:6318 PMCID:PMC9588786

[84]

Li Z,Deol KK.Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability.Nat Chem Biol2022;18:751-61 PMCID:PMC9469796

[85]

Zhang Y,Nie L.mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation.Nat Commun2021;12:1589 PMCID:PMC7952727

[86]

Sirover MA.Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation.J Cell Biochem2012;113:2193-200 PMCID:PMC3350569

[87]

Doll S,Shah R.FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019;575:693-8

[88]

Yang WH.Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis.Mol Cell Oncol2020;7:1699375 PMCID:PMC6961671

[89]

Timmerman LA,Yuneva M.Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.Cancer Cell2013;24:450-65 PMCID:PMC3931310

[90]

Banjac A,Sato H.The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.Oncogene2008;27:1618-28

[91]

Jin Y,Li L,Huang H.SNAI2 promotes the development of ovarian cancer through regulating ferroptosis.Bioengineered2022;13:6451-63 PMCID:PMC8974033

[92]

Feng H.Unsolved mysteries: How does lipid peroxidation cause ferroptosis?.PLoS Biol2018;16:e2006203 PMCID:PMC5991413

[93]

Baba Y,Shimada BK.Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes.Am J Physiol Heart Circ Physiol2018;314:H659-68 PMCID:PMC5899260

[94]

Jin Y,Lu X.C-MYC Inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy.Cells2022;11:4127 PMCID:PMC9776536

[95]

Battaglia AM,Perrotta ID.Iron administration overcomes resistance to erastin-mediated ferroptosis in ovarian cancer cells.Front Oncol2022;12:868351 PMCID:PMC9008715

[96]

Qin K,Wang H.circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis.BMB Rep2023;56:184-9 PMCID:PMC10068343

[97]

Cheng Q,Li M,Yi X.Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo.J Obstet Gynaecol Res2021;47:2481-91

[98]

Xu R,Zhao Q.Ferroptosis synergistically sensitizes wee1 inhibitors: a bibliometric study.Am J Transl Res2022;14:8473-88 PMCID:PMC9827303

[99]

Hong T,Chen X.PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer.Redox Biol2021;42:101928 PMCID:PMC8113041

[100]

Cang W,Gu L.Erastin enhances metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization through STAT3/IL-8 axis.Int Immunopharmacol2022;113:109422

[101]

Gao M,Liu F.Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy.Biomaterials2019;223:119486

[102]

Capelletti MM,Puy H.Ferroptosis in liver diseases: an overview.Int J Mol Sci2020;21:4908 PMCID:PMC7404091

[103]

Yang WS,Gaschler MM,Shchepinov MS.Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc Natl Acad Sci U S A2016;113:E4966-75 PMCID:PMC5003261

[104]

Zhao G,Matei D.Ovarian cancer-why lipids matter.Cancers2019;11:1870 PMCID:PMC6966536

[105]

Anandhan A,Shakya A.NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8.Sci Adv2023;9:eade9585 PMCID:PMC9891695

[106]

Wang X,Ren X.MTHFR inhibits TRC8-mediated HMOX1 ubiquitination and regulates ferroptosis in ovarian cancer.Clin Transl Med2022;12:e1013 PMCID:PMC9505752

[107]

Shi Z,Cao L.AKT1 participates in ferroptosis vulnerability by driving autophagic degradation of FTH1 in cisplatin-resistant ovarian cancer.Biochem Cell Biol2023;

[108]

Wang Y,Zhang W.HRD1 functions as a tumor suppressor in ovarian cancer by facilitating ubiquitination-dependent SLC7A11 degradation.Cell Cycle2023;22:1116-26 PMCID:PMC10081055

[109]

Zhang D,Hu B,Shen H.MiR-1-3p enhances the sensitivity of ovarian cancer cells to ferroptosis by targeting FZD7.Zhong Nan Da Xue Xue Bao Yi Xue Ban2022;47:1512-21

[110]

Yang WH,Wu J,Murphy SK.A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer.Mol Cancer Res2020;18:79-90 PMCID:PMC6942206

[111]

Zhu X,Qiu L,Wang J.Norcantharidin induces ferroptosis via the suppression of NRF2/HO-1 signaling in ovarian cancer cells.Oncol Lett2022;24:359 PMCID:PMC9478624

[112]

Carbone M.Stearoyl CoA desaturase regulates ferroptosis in ovarian cancer offering new therapeutic perspectives.Cancer Res2019;79:5149-50

[113]

Xuan Y,Yung MM.SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells.Theranostics2022;12:3534-52 PMCID:PMC9065188

[114]

Tesfay L,Konstorum A.Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death.Cancer Res2019;79:5355-66 PMCID:PMC6801059

[115]

Zhang Q,Deng L.ACSL1-induced ferroptosis and platinum resistance in ovarian cancer by increasing FSP1 N-myristylation and stability.Cell Death Discov2023;9:83 PMCID:PMC9992462

[116]

Hu K,Zhou L.Downregulated PRNP facilitates cell proliferation and invasion and has effect on the immune regulation in ovarian cancer.J Immunol Res2022;2022:3205040 PMCID:PMC9537007

[117]

Lu Y,Xu Y,Wang Y.Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway.Hum Exp Toxicol2022;41:9603271221120652

[118]

Novera W,Nin DS.Cysteine deprivation targets ovarian clear cell carcinoma via oxidative stress and iron-sulfur cluster biogenesis deficit.Antioxid Redox Signal2020;33:1191-208 PMCID:PMC8697566

[119]

Sun J,Pan S.Dichloroacetate attenuates the stemness of colorectal cancer cells via trigerring ferroptosis through sequestering iron in lysosomes.Environ Toxicol2021;36:520-9

[120]

Fang D.VDAC Regulation: a mitochondrial target to stop cell proliferation.Adv Cancer Res2018;138:41-69 PMCID:PMC6234976

[121]

Li T.Glutamine metabolism in cancer.Adv Exp Med Biol2018;1063:13-32

[122]

Riess JW,Shackelford D.Phase 1 trial of MLN0128 (Sapanisertib) and CB-839 HCl (Telaglenastat) in patients with advanced NSCLC (NCI 10327): rationale and study design.Clin Lung Cancer2021;22:67-70 PMCID:PMC7834952

[123]

Chan DW,Chan YS.MAP30 protein from Momordica charantia is therapeutic and has synergic activity with cisplatin against ovarian cancer in vivo by altering metabolism and inducing ferroptosis.Pharmacol Res2020;161:105157

[124]

Lei G,Gan B.Targeting ferroptosis as a vulnerability in cancer.Nat Rev Cancer2022;22:381-96 PMCID:PMC10243716

[125]

Wang W,Choi JE.CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019;569:270-4 PMCID:PMC6533917

[126]

Zhou HH,Cai LY.Erastin reverses ABCB1-mediated docetaxel resistance in ovarian cancer.Front Oncol2019;9:1398 PMCID:PMC6930896

[127]

Wang X,Chu Y.O-GlcNAcylation of ZEB1 facilitated mesenchymal pancreatic cancer cell ferroptosis.Int J Biol Sci2022;18:4135-50 PMCID:PMC9274488

[128]

Bauman MMJ,Monie DD,Singh R.Strategies, considerations, and recent advancements in the development of liquid biopsy for glioblastoma: a step towards individualized medicine in glioblastoma.Neurosurg Focus2022;53:E14 PMCID:PMC9879623

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/