A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer

Kenneth Sooi , Robert Walsh , Nesaretnam Kumarakulasinghe , Alvin Wong , Natalie Ngoi

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) : 656 -73.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) :656 -73. DOI: 10.20517/cdr.2023.48
review-article

A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer

Author information +
History +
PDF

Abstract

Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected population, there has not been much success with immunotherapy treatment in advanced prostate cancer. Researchers have looked at various strategies to overcome immune resistance, including the identification of more biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour microenvironment that predispose to immune resistance and rational strategies to enhance antitumour responsiveness in advanced prostate cancer.

Keywords

Prostate cancer / immunotherapy / immune checkpoint inhibitor / immune resistance / tumour microenvironment

Cite this article

Download citation ▾
Kenneth Sooi, Robert Walsh, Nesaretnam Kumarakulasinghe, Alvin Wong, Natalie Ngoi. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. Cancer Drug Resistance, 2023, 6(3): 656-73 DOI:10.20517/cdr.2023.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Sekhoacha M,Motloung P,Adegoke A.Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches.Molecules2022;27:5730 PMCID:PMC9457814

[3]

Cancer stat facts: prostate cancer. Available from: https://seer.cancer.gov/statfacts/html/prost.html. [Last accessed on 19 Sep 2023]

[4]

FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication. [Last accessed on 19 Sep 2023]

[5]

FDA grants accelerated approval to dostarlimab-gxly for dMMR advanced solid tumors. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors. [Last accessed on 19 Sep 2023]

[6]

Sedhom R.Clinical implications of mismatch repair deficiency in prostate cancer.Future Oncol2019;15:2395-411 PMCID:PMC6714067

[7]

de Bono JS,Gurel B.Prostate carcinogenesis: inflammatory storms.Nat Rev Cancer2020;20:455-69

[8]

Krueger TE,Meeker AK,Brennen WN.Tumor-infiltrating mesenchymal stem cells: drivers of the immunosuppressive tumor microenvironment in prostate cancer?.Prostate2019;79:320-30 PMCID:PMC6549513

[9]

Gannon PO,Delvoye N,Mes-Masson AM.Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients.J Immunol Methods2009;348:9-17

[10]

Gabrilovich DI.Myeloid-derived suppressor cells as regulators of the immune system.Nat Rev Immunol2009;9:162-74 PMCID:PMC2828349

[11]

Garcia AJ,Arenzana TL.Erratum for Garcia et al., Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression.Mol Cell Biol2014;34:2017-28 PMCID:PMC4135550

[12]

Jamaspishvili T,Ross AE.Clinical implications of PTEN loss in prostate cancer.Nat Rev Urol2018;15:222-34 PMCID:PMC7472658

[13]

Zhang S,Zhu C,Wang G.The role of myeloid-derived suppressor cells in patients with solid tumors: a meta-analysis.PLoS One2016;11:e0164514 PMCID:PMC5079654

[14]

Gonda K,Ohtake T.Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer.Oncol Lett2017;14:1766-74 PMCID:PMC5529875

[15]

Liu G,Wang X.Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis.J Clin Invest2013;123:4410-22 PMCID:PMC3784540

[16]

Wensveen FM,Polić B.NKG2D: a master regulator of immune cell responsiveness.Front Immunol2018;9:441 PMCID:PMC5852076

[17]

Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors.J Immunother Cancer2018;6:157 PMCID:PMC6307306

[18]

Cai L,Yamada T.Defective HLA class I antigen processing machinery in cancer.Cancer Immunol Immunother2018;67:999-1009 PMCID:PMC8697037

[19]

Mouw KW,Konstantinopoulos PA.DNA damage and repair biomarkers of immunotherapy response.Cancer Discov2017;7:675-93 PMCID:PMC5659200

[20]

Rizvi NA,Snyder A.Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.Science2015;348:124-8 PMCID:PMC4993154

[21]

Hugo W,Sun L.Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.Cell2016;165:35-44 PMCID:PMC4808437

[22]

Strickland KC,Shukla SA.Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer.Oncotarget2016;7:13587-98 PMCID:PMC4924663

[23]

McAlpine JN,Köbel M.BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma.Mod Pathol2012;25:740-50

[24]

Clarke B,Lee CH.Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss.Mod Pathol2009;22:393-402

[25]

Chung JH,Sokol E.Prospective comprehensive genomic profiling of primary and metastatic prostate tumors.JCO Precis Oncol2019;3:1-23 PMCID:PMC6583915

[26]

Rodrigues DN,Liu D.Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer.J Clin Invest2018;128:4441-53 PMCID:PMC6159966

[27]

Antonarakis ES,Fu W.CDK12-altered prostate cancer: clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP-ribose) polymerase inhibitors, and PD-1 inhibitors.JCO Precis Oncol2020;4:370-81 PMCID:PMC7252221

[28]

Alme AKB,Faltas BM.Blocking immune checkpoints in prostate, kidney, and urothelial cancer: an overview.Urol Oncol2016;34:171-81 PMCID:PMC4834698

[29]

Goswami S,Subudhi SK.Immune checkpoint therapies in prostate cancer.Cancer J2016;22:117-20 PMCID:PMC4847149

[30]

Walunas TL,Bakker CY.CTLA-4 can function as a negative regulator of T cell activation.Immunity1994;1:405-13

[31]

Selby MJ,Quigley M.Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells.Cancer Immunol Res2013;1:32-42

[32]

Kwon ED,Scher HI.Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial.Lancet Oncol2014;15:700-12

[33]

Beer TM,Drake CG.Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer.J Clin Oncol2017;35:40-7

[34]

Chen L.Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity.Nat Rev Immunol2004;4:336-47

[35]

Keir ME,Freeman GJ.PD-1 and its ligands in tolerance and immunity.Annu Rev Immunol2008;26:677-704

[36]

Fife BT,Eagar TN.Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal.Nat Immunol2009;10:1185-92 PMCID:PMC2778301

[37]

Raedler LA.Opdivo (Nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma.Am Health Drug Benefits2015;8:180-3 PMCID:PMC4665056

[38]

Kazandjian D,Blumenthal G.FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy.Oncologist2016;21:634-42 PMCID:PMC4861371

[39]

Antonarakis ES,Gross-Goupil M.Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study.J Clin Oncol2020;38:395-405 PMCID:PMC7186583

[40]

Hansen AR,Ott PA.Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study.Ann Oncol2018;29:1807-13

[41]

Topalian SL,Brahmer JR.Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.N Engl J Med2012;366:2443-54 PMCID:PMC3544539

[42]

Taube JM,Brahmer JR.Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.Clin Cancer Res2014;20:5064-74 PMCID:PMC4185001

[43]

Brahmer JR,Wollner I.Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates.J Clin Oncol2010;28:3167-75 PMCID:PMC4834717

[44]

Martin AM,Nirschl CJ.Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance.Prostate Cancer Prostatic Dis2015;18:325-32 PMCID:PMC4641011

[45]

Robinson D,Wu YM.Integrative clinical genomics of advanced prostate cancer.Cell2015;161:1215-28

[46]

Dias A,Mikropoulos C.Prostate cancer germline variations and implications for screening and treatment.Cold Spring Harb Perspect Med2018;8:a030379 PMCID:PMC6120689

[47]

McCabe N,Lord CJ.Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.Cancer Res2006;66:8109-15

[48]

Abida W,Patnaik A.Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study.Clin Cancer Res2020;26:2487-96 PMCID:PMC8435354

[49]

de Bono J,Fizazi K.Olaparib for metastatic castration-resistant prostate cancer.N Engl J Med2020;382:2091-102

[50]

Fizazi K,Reaume MN.Rucaparib or physician’s choice in metastatic prostate cancer.N Engl J Med2023;388:719-32 PMCID:PMC10064172

[51]

Clarke NW,Thiery-vuillemin A.Abiraterone and olaparib for metastatic castration-resistant prostate cancer.NEJM Evidence2022;1:EVIDoa2200043

[52]

Shen J,Ju Z.PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness.Cancer Res2019;79:311-9 PMCID:PMC6588002

[53]

Pham MM,Peng G,Yap TA.Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises.Trends Cancer2021;7:958-70 PMCID:PMC8458234

[54]

Karzai F,Madan RA.Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations.J Immunother Cancer2018;6:141 PMCID:PMC6280368

[55]

Alva AS,Chou J.Phase 2 trial of immunotherapy in tumors with CDK12 inactivation (IMPACT): results from cohort A of patients (pts) with metastatic castration resistant prostate cancer (mCRPC) receiving dual immune checkpoint inhibition (ICI).J Clin Oncol2022;40:103

[56]

López-Campos F,Romero-Laorden N.Immunotherapy in advanced prostate cancer: current knowledge and future directions.Biomedicines2022;10:537 PMCID:PMC8945350

[57]

Movassaghi M,Anderson CB,Saenger Y.Overcoming immune resistance in prostate cancer: challenges and advances.Cancers2021;13:4757 PMCID:PMC8507531

[58]

Prokhnevska N,Kissick HT.Immunological complexity of the prostate cancer microenvironment influences the response to immunotherapy.Adv Exp Med Biol2019;1210:121-47

[59]

Kantoff PW,Shore ND.Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N Engl J Med2010;363:411-22

[60]

Sheikh NA,Kantoff PW.Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer.Cancer Immunol Immunother2013;62:137-47 PMCID:PMC3541926

[61]

GuhaThakurta D,Fan LQ.Humoral immune response against nontargeted tumor antigens after treatment with sipuleucel-t and its association with improved clinical outcome.Clin Cancer Res2015;21:3619-30 PMCID:PMC4868054

[62]

Warren TL.Uses of granulocyte-macrophage colony-stimulating factor in vaccine development.Curr Opin Hematol2000;7:168-73

[63]

Simons JW,Mikhak B.Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer.Clin Cancer Res2006;12:3394-401

[64]

Rauch S,Schmidt KE.New vaccine technologies to combat outbreak situations.Front Immunol2018;9:1963 PMCID:PMC6156540

[65]

Bouard D,Cosset FL.Viral vectors: from virology to transgene expression.Br J Pharmacol2009;157:153-65 PMCID:PMC2629647

[66]

Madan RA,Mohebtash M,Gulley JL.Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer.Expert Opin Investig Drugs2009;18:1001-11 PMCID:PMC3449276

[67]

Gulley JL,Vogelzang NJ.Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer.J Clin Oncol2019;37:1051-61 PMCID:PMC6494360

[68]

Madan RA,Arlen PM.Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial.Lancet Oncol2012;13:501-8 PMCID:PMC6359905

[69]

Stein MN,Mega AE.KEYNOTE-046 (Part B): effects of ADXS-PSA in combination with pembrolizumab on survival in metastatic, castration-resistant prostate cancer patients with or without prior exposure to docetaxel.J Clin Oncol2020;38:126

[70]

Fukumura D,Amoozgar Z,Jain RK.Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.Nat Rev Clin Oncol2018;15:325-40 PMCID:PMC5921900

[71]

Ott PA,Buchbinder EI.Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data.Front Oncol2015;5:202 PMCID:PMC4585112

[72]

Shelley M,Coles B,Wilt TJ.Chemotherapy for hormone-refractory prostate cancer.Cochrane Database Syst Rev2006;18:CD005247

[73]

Redman JM,Atkins MB.Advances in immunotherapy for melanoma.BMC Med2016;14:20 PMCID:PMC4744430

[74]

Rolfo C,Santarpia M.Immunotherapy in NSCLC: a promising and revolutionary weapon.Adv Exp Med Biol2017;995:97-125

[75]

Huang Y,Righi E.Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy.Proc Natl Acad Sci U S A2012;109:17561-6 PMCID:PMC3491458

[76]

Adotevi O,Ravel P.A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients.J Immunother2010;33:991-8

[77]

Ko JS,Rini BI.Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients.Clin Cancer Res2009;15:2148-57

[78]

Graham DK,Davies KD.The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.Nat Rev Cancer2014;14:769-85

[79]

Lemke G.Immunobiology of the TAM receptors.Nat Rev Immunol2008;8:327-36 PMCID:PMC2856445

[80]

FDA Prescribing Information - Cabometyx. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208692s010lbl.pdf. [Last accessed on 25 Sep 2023]

[81]

Tripathi M,Billet S.Modulation of cabozantinib efficacy by the prostate tumor microenvironment.Oncotarget2017;8:87891-902 PMCID:PMC5675680

[82]

Agarwal N,Maughan BL.Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021).Lancet Oncol2022;23:899-909

[83]

Sharma P,Narayan V.Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial.Cancer Cell2020;38:489-99.e3

[84]

Joshi H.Association of ARV7 expression with molecular and clinical characteristics in prostate cancer.J Clin Oncol2016;34:109

[85]

Shenderov E,Fu W.Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: a phase-2 nonrandomized clinical trial.Prostate2021;81:326-38 PMCID:PMC8018565

[86]

Boudadi K,Anagnostou V.Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer.Oncotarget2018;9:28561-71 PMCID:PMC6033362

[87]

Hotte SJ,Chi KN.CCTG IND 232: a phase II study of durvalumab with or without tremelimumab in patients with metastatic castration resistant prostate cancer (mCRPC).Ann Oncol2019;30:v885

[88]

Aragon-Ching JB,Gulley JL.Impact of androgen-deprivation therapy on the immune system: implications for combination therapy of prostate cancer.Front Biosci2007;12:4957-71

[89]

Foster WR,Shi H.Drug safety is a barrier to the discovery and development of new androgen receptor antagonists.Prostate2011;71:480-8

[90]

Page ST,Bremner WJ.Effect of medical castration on CD4+CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites.Am J Physiol Endocrinol Metab2006;290:E856-63

[91]

Gamat M.Androgen deprivation and immunotherapy for the treatment of prostate cancer.Endocr Relat Cancer2017;24:T297-310 PMCID:PMC5669826

[92]

Shen YC,Kochel CM.Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): preclinical activity in the Myc-CaP model.Prostate Cancer Prostatic Dis2018;21:113-25 PMCID:PMC5897134

[93]

Kissick HT,Dunn LK.Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation.Proc Natl Acad Sci U S A2014;111:9887-92 PMCID:PMC4103356

[94]

Powles T,Gillessen S.Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial.Nat Med2022;28:144-53 PMCID:PMC9406237

[95]

The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer.Cell2015;163:1011-25 PMCID:PMC4695400

[96]

Hoimes CJ,Tagawa ST.KEYNOTE-199 cohorts (C) 4 and 5: phase II study of pembrolizumab (pembro) plus enzalutamide (enza) for enza-resistant metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2020;38:5543

[97]

Hodge JW,Farsaci B.Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death.Int J Cancer2013;133:624-36 PMCID:PMC3663913

[98]

Galluzzi L,Kepp O,Kroemer G.Immunological effects of conventional chemotherapy and targeted anticancer agents.Cancer Cell2015;28:690-714

[99]

Dosset M,Lagrange A.PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer.Oncoimmunology2018;7:e1433981 PMCID:PMC5980491

[100]

Alizadeh D,Hanke NT.Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer.Cancer Res2014;74:104-18 PMCID:PMC3896092

[101]

Vicari AP,Zhang N.Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse.Cancer Immunol Immunother2009;58:615-28

[102]

Garnett CT,Hodge JW.Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement.Clin Cancer Res2008;14:3536-44 PMCID:PMC2682419

[103]

Fizazi K,Castellano D.Efficacy and safety of nivolumab in combination with docetaxel in men with metastatic castration-resistant prostate cancer in CheckMate 9KD.Ann Oncol2019;30:v885-6

[104]

Sridhar SS,Gravis G.Pembrolizumab (pembro) plus docetaxel and prednisone in patients (pts) with abiraterone acetate (abi) or enzalutamide (enza)-pretreated metastatic castration-resistant prostate cancer (mCRPC): KEYNOTE-365 cohort B efficacy, safety and, biomarker results.J Clin Oncol2020;38:5550

[105]

Sartor O,Chi KN.Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer.N Engl J Med2021;385:1091-103 PMCID:PMC8446332

[106]

Chen H,Fu K.Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy.Theranostics2019;9:7948-60 PMCID:PMC6831469

[107]

Morris MJ,Petrylak DP.Safety and clinical activity of atezolizumab (atezo) + radium-223 dichloride (r-223) in 2L metastatic castration-resistant prostate cancer (mCRPC): results from a phase Ib clinical trial.J Clin Oncol2020;38:5565

[108]

Sandhu SK,Emmett L.577O PRINCE: interim analysis of the phase Ib study of 177Lu-PSMA-617 in combination with pembrolizumab for metastatic castration resistant prostate cancer (mCRPC).Ann Oncol2021;32:S626-7

[109]

Fu J,Qian Z.Chimeric Antigen receptor-T (CAR-T) cells targeting Epithelial cell adhesion molecule (EpCAM) can inhibit tumor growth in ovarian cancer mouse model.J Vet Med Sci2021;83:241-7 PMCID:PMC7972873

[110]

Narayan V,Jung IY.PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial.Nat Med2022;28:724-34 PMCID:PMC10308799

[111]

Slovin SF,Falchook GS.Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2022;40:98

[112]

Bębnowska D,Niedźwiedzka-Rystwej P.CAR-T cell therapy - an overview of targets in gastric cancer.J Clin Med2020;9:1894 PMCID:PMC7355670

[113]

He C,Li Z.Co-expression of IL-7 improves NKG2D-based CAR T cell therapy on prostate cancer by enhancing the expansion and inhibiting the apoptosis and exhaustion.Cancers2020;12:1969 PMCID:PMC7409228

[114]

Yang S,Zhao Q.B7-H3, a checkpoint molecule, as a target for cancer immunotherapy.Int J Biol Sci2020;16:1767-73 PMCID:PMC7211166

[115]

Hummel HD,Grüllich C.Phase I study of pasotuxizumab (AMG 212/BAY 2010112), a PSMA-targeting BiTE (Bispecific T-cell Engager) immune therapy for metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2020;38:124

[116]

Tran B,Dorff T.609O results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC).Ann Oncol2020;31:S507

[117]

Lin TY,Long A,Cheung NV.Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy.J Immunother Cancer2021;9:e003114 PMCID:PMC8438958

[118]

Dorff TB,Forman SJ.Novel redirected T-cell immunotherapies for advanced prostate cancer.Clin Cancer Res2022;28:576-84 PMCID:PMC8866199

[119]

Vijayan D,Teng MWL.Targeting immunosuppressive adenosine in cancer.Nat Rev Cancer2017;17:709-24

[120]

Schmiel SE,Jenkins MK.Cutting edge: adenosine A2a receptor signals inhibit germinal center T follicular helper cell differentiation during the primary response to vaccination.J Immunol2017;198:623-8 PMCID:PMC5225048

[121]

Lappas CM,Linden J.A2A adenosine receptor induction inhibits IFN-γ production in murine CD4+ T cells1.J Immunol2005;174:1073-80

[122]

Ha H,Neamati N.Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases.Theranostics2017;7:1543-88 PMCID:PMC5436513

[123]

Yuen KC,Gupta V.High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade.Nat Med2020;26:693-8 PMCID:PMC8286544

[124]

Calcinotto A,Zagato E.IL-23 secreted by myeloid cells drives castration-resistant prostate cancer.Nature2018;559:363-9 PMCID:PMC6461206

[125]

Shorning BY,Smalley MJ.The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling.Int J Mol Sci2020;21:4507 PMCID:PMC7350257

[126]

Conciatori F,Falcone I.Role of mTOR signaling in tumor microenvironment: an overview.Int J Mol Sci2018;19:2453 PMCID:PMC6121402

[127]

Qi Z,Zhang L.Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment.Nat Commun2022;13:182 PMCID:PMC8748754

[128]

Gao J,Pettaway CA.VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer.Nat Med2017;23:551-5 PMCID:PMC5466900

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/