Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia

Lindsay Gurska , Kira Gritsman

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) : 674 -87.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) :674 -87. DOI: 10.20517/cdr.2023.39
review-article

Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia

Author information +
History +
PDF

Abstract

Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.

Keywords

Acute myeloid leukemia / T cells / immune checkpoint / immune evasion

Cite this article

Download citation ▾
Lindsay Gurska, Kira Gritsman. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. Cancer Drug Resistance, 2023, 6(3): 674-87 DOI:10.20517/cdr.2023.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

American Cancer Society. Cancer Facts & Figures 2023. Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html. [Last accessed on 22 Sep 2023]

[2]

Shlush LI.The evolution of leukaemia from pre-leukaemic and leukaemic stem cells.J Intern Med2021;289:636-49

[3]

Pollyea DA.Therapeutic targeting of acute myeloid leukemia stem cells.Blood2017;129:1627-35

[4]

Corces-Zimmerman MR,Weissman IL,Majeti R.Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission.Proc Natl Acad Sci U S A2014;111:2548-53 PMCID:PMC3932921

[5]

Gurska LM,Gritsman K.Signaling pathways in leukemic stem cells.Adv Exp Med Biol2019;1143:1-39 PMCID:PMC7249489

[6]

Velten L,Hernández-Malmierca P.Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics.Nat Commun2021;12:1366 PMCID:PMC7921413

[7]

Ng SW,Kennedy JA.A 17-gene stemness score for rapid determination of risk in acute leukaemia.Nature2016;540:433-7

[8]

van Galen P,Wadsworth Ii MH.Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity.Cell2019;176:1265-81.e24 PMCID:PMC6515904

[9]

Eppert K,Lechman ER.Stem cell gene expression programs influence clinical outcome in human leukemia.Nat Med2011;17:1086-93

[10]

Pandolfi A,Steidl U.Concise review: preleukemic stem cells: molecular biology and clinical implications of the precursors to leukemia stem cells.Stem Cells Transl Med2013;2:143-50 PMCID:PMC3659760

[11]

Newell LF.Advances in acute myeloid leukemia.BMJ2021;375:n2026

[12]

Tallman MS,Altman JK.Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology.J Natl Compr Canc Netw2019;17:721-49

[13]

Vago L.Immune escape and immunotherapy of acute myeloid leukemia.J Clin Invest2020;130:1552-64 PMCID:PMC7108895

[14]

Ismail MM.Bone marrow T-cell percentage: a novel prognostic indicator in acute myeloid leukemia.Int J Hematol2017;105:453-64

[15]

Zhang S,Wu J.Elevated frequencies of CD4+CD25+CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia.Int J Cancer2011;129:1373-81

[16]

Murphy K. Janeway’s Immunobiology. 9th ed. New York, NY: Garland Science, Taylor & Francis Group, LLC; 2017. p. 139-68. Available from: https://inmunologos.files.wordpress.com/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf. [Last accessed on 22 Sep 2023]

[17]

Devaiah BN.CIITA and its dual roles in MHC gene transcription.Front Immunol2013;4:476 PMCID:PMC3868913

[18]

Chen L.Molecular mechanisms of T cell co-stimulation and co-inhibition.Nat Rev Immunol2013;13:227-42 PMCID:PMC3786574

[19]

Anderson AC,Kuchroo VK.Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation.Immunity2016;44:989-1004 PMCID:PMC4942846

[20]

Giannopoulos K.Targeting immune signaling checkpoints in acute myeloid leukemia.J Clin Med2019;8:236 PMCID:PMC6406869

[21]

Wang H,Sankin AI,Guan F.Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies.J Hematol Oncol2019;12:59 PMCID:PMC6558778

[22]

Lamble AJ.Targeting the immune microenvironment in acute myeloid leukemia: a focus on T cell immunity.Front Oncol2018;8:213 PMCID:PMC6008423

[23]

Klempner SJ,Bane S.Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence.Oncologist2020;25:e147-59 PMCID:PMC6964127

[24]

Chen J,Sun D.Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level.Nat Med2019;25:103-10 PMCID:PMC6436966

[25]

Zhou Q,Highfill SL.Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.Blood2010;116:2484-93 PMCID:PMC2953885

[26]

Kong Y,Claxton DF.PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation.Blood Cancer J2015;5:e330 PMCID:PMC4526784

[27]

Noviello M,Ruggiero E.Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT.Nat Commun2019;10:1065 PMCID:PMC6434052

[28]

Chen C,Wang S.Expression patterns of immune checkpoints in acute myeloid leukemia.J Hematol Oncol2020;13:28 PMCID:PMC7118887

[29]

Brodská B,Šálek C,Gašová Z.High PD-L1 expression predicts for worse outcome of leukemia patients with concomitant NPM1 and FLT3 mutations.Int J Mol Sci2019;20:2823 PMCID:PMC6600137

[30]

Berthon C,Liu J.In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors.Cancer Immunol Immunother2010;59:1839-49 PMCID:PMC2945474

[31]

Pistillo MP,Palmisano GL.CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells.Blood2003;101:202-9

[32]

Laurent S,Martelli AM.CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can be targeted with ligands to induce apoptosis.Br J Haematol2007;136:597-608

[33]

Christopher MJ,Rettig MP.Immune escape of relapsed AML cells after allogeneic transplantation.N Engl J Med2018;379:2330-41 PMCID:PMC6322675

[34]

Eagle K,Kalfon J.Transcriptional plasticity drives leukemia immune escape.Blood Cancer Discov2022;3:394-409 PMCID:PMC9897290

[35]

Ho JNHG,Lowinus T.Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation.Blood2022;140:1167-81 PMCID:PMC9461473

[36]

Corradi G,Simonetti G.Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells.Clin Cancer Res2022;28:3141-55

[37]

Wang R,Wang H.Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model.Cancer Lett2020;469:151-61

[38]

Chan CJ,Martinet L.Molecular mechanisms of natural killer cell activation in response to cellular stress.Cell Death Differ2014;21:5-14 PMCID:PMC3857624

[39]

Lion E,Berneman ZN,Smits EL.Natural killer cell immune escape in acute myeloid leukemia.Leukemia2012;26:2019-26

[40]

Khaznadar Z,Agaugué S.Defective NK cells in acute myeloid leukemia patients at diagnosis are associated with blast transcriptional signatures of immune evasion.J Immunol2015;195:2580-90

[41]

Xu J.Natural killer cell-based immunotherapy for acute myeloid leukemia.J Hematol Oncol2020;13:167 PMCID:PMC7720594

[42]

Carlsten M.Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological opportunities to bolster the endogenous NK cells.Front Immunol2019;10:2357 PMCID:PMC6797594

[43]

Kaweme NM.Optimizing NK cell-based immunotherapy in myeloid leukemia: abrogating an immunosuppressive microenvironment.Front Immunol2021;12:683381 PMCID:PMC8247591

[44]

Raneros A, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other.Oncoimmunology2019;8:e1539617 PMCID:PMC6343801

[45]

Baragaño Raneros A,Fernandez AF.Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia.Genes Immun2015;16:71-82

[46]

Paczulla AM,Raffel S.Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion.Nature2019;572:254-9 PMCID:PMC6934414

[47]

Sallman DA,Sagatys EM.NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient.Haematologica2018;103:e424-6 PMCID:PMC6119132

[48]

Driouk L,Kamihara Y.Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia.Front Immunol2020;11:580328 PMCID:PMC7769813

[49]

Wu Z,Wu M.Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia.Biomed Pharmacother2021;137:111299

[50]

Wang Z,Wang M.AML1-ETO inhibits acute myeloid leukemia immune escape by CD48.Leuk Lymphoma2021;62:937-43

[51]

Zhang T,Liu P,Feng C.Heme oxygenase 1 overexpression induces immune evasion of acute myeloid leukemia against natural killer cells by inhibiting CD48.J Transl Med2022;20:394 PMCID:PMC9441067

[52]

Wang Z,Guan W.Acute myeloid leukemia immune escape by epigenetic CD48 silencing.Clin Sci2020;134:261-71

[53]

Barakos GP.Microenvironmental features driving immune evasion in myelodysplastic syndromes and acute myeloid leukemia.Diseases2022;10:33 PMCID:PMC9221594

[54]

Davids MS,Bachireddy P.Ipilimumab for patients with relapse after allogeneic transplantation.N Engl J Med2016;375:143-53

[55]

Zeidner JF,Ivanova A.Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute myeloid leukemia.Blood Cancer Discov2021;2:616-29 PMCID:PMC8580622

[56]

Agrawal V,Beltran AL.Promising safety and efficacy results from an ongoing phase 1b study of pembrolizumab combined with decitabine in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML).Blood2022;140:6235-6

[57]

Buecklein VL,Spiekermann K.Trial in progress: an open-label phase II study of relatlimab with nivolumab in combination with 5-azacytidine for the treatment of patients with relapsed/refractory and elderly patients with newly diagnosed acute myeloid leukemia (AARON).Blood2022;140:3227-8

[58]

Yang H,DiNardo C.Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents.Leukemia2014;28:1280-8 PMCID:PMC4032802

[59]

Garcia JS,Penter L.Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve settings.Blood2023;141:1884-8

[60]

Penter L,Wolff JO.Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid disease.Blood2023;141:1817-30 PMCID:PMC10122106

[61]

Goswami M,Dillon LW.Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia.J Immunother Cancer2022;10:e003392 PMCID:PMC8753450

[62]

Rutella S,Mazziotta F.Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia.J Clin Invest2022;132:e159579 PMCID:PMC9621145

[63]

Daver N,Basu S.Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study.Cancer Discov2019;9:370-83 PMCID:PMC6397669

[64]

Radpour R,Simillion C,Bruggmann R.CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia.Leukemia2019;33:2379-92

[65]

Wang M,Tian T.Increased regulatory T cells in peripheral blood of acute myeloid leukemia patients rely on tumor necrosis factor (TNF)-α-TNF receptor-2 pathway.Front Immunol2018;9:1274 PMCID:PMC5996048

[66]

Dong Y,Huang Y.PD-L1 is expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia.Front Immunol2020;11:1710 PMCID:PMC7412746

[67]

Taghiloo S.Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways.Crit Rev Oncol Hematol2021;157:103164

[68]

Teague RM.Immune evasion in acute myeloid leukemia: current concepts and future directions.J Immunother Cancer2013;1:1

[69]

Tettamanti S,Biondi A,Serafini M.Catch me if you can: how AML and its niche escape immunotherapy.Leukemia2022;36:13-22 PMCID:PMC8727297

[70]

Karachaliou N,Sosa A.The combination of checkpoint immunotherapy and targeted therapy in cancer.Ann Transl Med2017;5:388 PMCID:PMC5653508

[71]

Daver N,Bücklein V.T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments.Leukemia2021;35:1843-63 PMCID:PMC8257483

[72]

Marvin-Peek J,Olalekan OO.Challenges and advances in chimeric antigen receptor therapy for acute myeloid leukemia.Cancers2022;14:497 PMCID:PMC8833567

[73]

Stelmach P.Leukemic stem cells and therapy resistance in acute myeloid leukemia.Haematologica2023;108:353-66 PMCID:PMC9890038

[74]

Rovatti PE,Lorentino F,Vago L.Mechanisms of leukemia immune evasion and their role in relapse after haploidentical hematopoietic cell transplantation.Front Immunol2020;11:147 PMCID:PMC7052328

[75]

Gournay V,Peux V.Immune landscape after allo-HSCT: TIGIT- and CD161-expressing CD4 T cells are associated with subsequent leukemia relapse.Blood2022;140:1305-21

[76]

Yan Y,Zhang VW.Epigenetic maintenance strategies after allogeneic stem cell transplantation in acute myeloid leukemia.Exp Hematol2022;109:1-10.e1

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/