Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma

Serena Astore , Giulia Baciarello , Linda Cerbone , Fabio Calabrò

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) : 517 -46.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (3) :517 -46. DOI: 10.20517/cdr.2023.33
review-article

Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma

Author information +
History +
PDF

Abstract

The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can choose patients’ treatments and cancer preventive strategies using an evolutionary approach thanks to the few evolutionary trajectories that characterize ccRCC.

Keywords

Renal cell carcinoma / resistance / tumor microenvironment / checkpoint inhibitors / target therapy

Cite this article

Download citation ▾
Serena Astore, Giulia Baciarello, Linda Cerbone, Fabio Calabrò. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma. Cancer Drug Resistance, 2023, 6(3): 517-46 DOI:10.20517/cdr.2023.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hahn AW,Agarwal N.First-line treatment of metastatic renal cell carcinoma: a systematic review and network meta-analysis.Eur Urol Oncol2019;2:708-15

[2]

Motzer RJ,Burotto M.Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (checkmate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial.Lancet Oncol2022;23:888-98 PMCID:PMC10305087

[3]

Albiges L,Burotto M.Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III checkmate 214 trial.ESMO Open2020;5:e001079 PMCID:PMC7703447

[4]

Motzer RJ,Escudier B.Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma.Cancer2022;128:2085-97 PMCID:PMC9543316

[5]

Powles T,Soulières D.Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial.Lancet Oncol2020;21:1563-73

[6]

Choueiri TK,Rini BI.Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma.Ann Oncol2020;31:1030-9 PMCID:PMC8436592

[7]

Choueiri TK,Motzer R.Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): extended follow-up from the phase 3, randomised, open-label study.Lancet Oncol2023;24:228-38

[8]

Heng DY,Regan MM.Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study.J Clin Oncol2009;27:5794-9

[9]

Heng DY,Regan MM.External validation and comparison with other models of the international metastatic renal-cell carcinoma database consortium prognostic model: a population-based study.Lancet Oncol2013;14:141-8 PMCID:PMC4144042

[10]

Rooney MS,Wu CJ,Hacohen N.Molecular and genetic properties of tumors associated with local immune cytolytic activity.Cell2015;160:48-61 PMCID:PMC4856474

[11]

Şenbabaoğlu Y,Winer AG.Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures.Genome Biol2016;17:231 PMCID:PMC5114739

[12]

Gabrilovich DI.Myeloid-derived suppressor cells as regulators of the immune system.Nat Rev Immunol2009;9:162-74 PMCID:PMC2828349

[13]

Schreiber RD,Smyth MJ.Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion.Science2011;331:1565-70

[14]

Chevrier S,Zanotelli VRT.An immune atlas of clear cell renal cell carcinoma.Cell2017;169:736-749.e18 PMCID:PMC5422211

[15]

Kaelin WG Jr.The von Hippel-Lindau gene, kidney cancer, and oxygen sensing.J Am Soc Nephrol2003;14:2703-11

[16]

George DJ.The von Hippel-Lindau protein, vascular endothelial growth factor, and kidney cancer.N Engl J Med2003;349:419-21

[17]

Elamin YY,Toomey S.Immune effects of bevacizumab: killing two birds with one stone.Cancer Microenviron2015;8:15-21 PMCID:PMC4449343

[18]

Kusmartsev S,Kübler H.Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma.J Immunol2008;181:346-53

[19]

Roland CL,Lynn KD.Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts.Mol Cancer Ther2009;8:1761-71

[20]

Zizzari IG,Botticelli A.TK Inhibitor pazopanib primes DCs by downregulation of the β-catenin pathway.Cancer Immunol Res2018;6:711-22

[21]

Choueiri TK,Escudier B.Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma.Clin Cancer Res2016;22:5461-71 PMCID:PMC5106340

[22]

McDermott DF,Atkins MB.Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma.Nat Med2018;24:749-57 PMCID:PMC6721896

[23]

Motzer RJ,Powles T.Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN renal 101 trial.Nat Med2020;26:1733-41 PMCID:PMC8493486

[24]

Motzer RJ,McDermott DF.Biomarker analysis from checkMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma.J Immunother Cancer2022;10:e004316 PMCID:PMC8935174

[25]

Brauer MJ,Schmidt M.Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies.Clin Cancer Res2013;19:3681-92

[26]

Powles T,Van Allen E.Immune biomarkers associated with clinical benefit from atezolizumab (MPDL3280a; anti-PD-L1) in advanced urothelial bladder cancer (UBC).J immunother Cancer2015;3:83 PMCID:PMC4645499

[27]

Zelenay S,Böttcher JP.Cyclooxygenase-dependent tumor growth through evasion of immunity.Cell2015;162:1257-70 PMCID:PMC4597191

[28]

Motzer RJ,Hamidi H.Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade.Cancer Cell2020;38:803-817.e4 PMCID:PMC8436590

[29]

Motzer RJ,Atkins MB.Final overall survival and molecular analysis in immotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs. sunitinib in patients with previously untreated metastatic renal cell carcinoma.JAMA Oncol2022;8:275-80 PMCID:PMC8855230

[30]

Mollica V,Gatto L.Resistance to systemic agents in renal cell carcinoma predict and overcome genomic strategies adopted by tumor.Cancers2019;11:830 PMCID:PMC6627706

[31]

Gubin MM,Schuster H.Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens.Nature2014;515:577-81 PMCID:PMC4279952

[32]

Terry S,Buart S,Venkatesh GH.Hypoxia-driven intratumor heterogeneity and immune evasion.Cancer Lett2020;492:1-10

[33]

Gordan JD,Dondeti VR.HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma.Cancer Cell2008;14:435-46 PMCID:PMC2621440

[34]

Wu CP,Wu YS.The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy.Mol Pharm2011;8:1996-2011

[35]

Krchniakova M,Neradil J,Veselska R.Repurposing tyrosine kinase inhibitors to overcome multidrug resistance in cancer: a focus on transporters and lysosomal sequestration.Int J Mol Sci2020;21:3157 PMCID:PMC7247577

[36]

Zhang GN,Wang YJ.Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib.Pharmacol Res2017;119:89-98 PMCID:PMC5392419

[37]

Minocha M,Qin B,Mitra AK.Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib.Int J Pharm2012;436:127-34 PMCID:PMC3573846

[38]

D’Cunha R,Murry DJ.TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux.Biopharm Drug Dispos2016;37:397-408

[39]

Ferrao P,Cole S.Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia.Leuk Res2001;25:395-405

[40]

Molinari A,Meschini S.Subcellular detection and localization of the drug transporter P-glycoprotein in cultured tumor cells.Curr Protein Pept Sci2002;3:653-70

[41]

Gotink KJ,Labots M.Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance.Clin Cancer Res2011;17:7337-46 PMCID:PMC4461037

[42]

Gotink KJ,de Haas RR.Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib.Cell Oncol2015;38:119-29 PMCID:PMC4555235

[43]

Zama IN,Elson P.Sunitinib rechallenge in metastatic renal cell carcinoma patients.Cancer2010;116:5400-6

[44]

Bergers G.Modes of resistance to anti-angiogenic therapy.Nat Rev Cancer2008;8:592-603 PMCID:PMC2874834

[45]

Lamouille S,Derynck R.Molecular mechanisms of epithelial-mesenchymal transition.Nat Rev Mol Cell Biol2014;15:178-96 PMCID:PMC4240281

[46]

Tam SY,Law HKW.Hypoxia-Induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond.Front Oncol2020;10:486 PMCID:PMC7156534

[47]

Yang MH,Chiou SH.Direct regulation of TWIST by HIF-1alpha promotes metastasis.Nat Cell Biol2008;10:295-305

[48]

Zhang W,Peng Y.HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer.PLoS One2015;10:e0129603 PMCID:PMC4461314

[49]

Peinado H,Olmeda D.A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression.EMBO J2005;24:3446-58 PMCID:PMC1276164

[50]

Lundgren K,Landberg G.Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer.Br J Cancer2009;101:1769-81 PMCID:PMC2778529

[51]

Hapke RY.Hypoxia-induced epithelial to mesenchymal transition in cancer.Cancer Lett2020;487:10-20 PMCID:PMC7336507

[52]

Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression.Nat Rev Cancer2013;13:97-110

[53]

Xu J,Derynck R.TGF-beta-induced epithelial to mesenchymal transition.Cell Res2009;19:156-72 PMCID:PMC4720263

[54]

Huber MA,Baumann B.NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression.J Clin Invest2004;114:569-81 PMCID:PMC503772

[55]

Wang Z,Kong D.The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness.Curr Drug Targets2010;11:745-51 PMCID:PMC3084452

[56]

Li H,Qu X.IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights.Mol Cancer2017;16:6 PMCID:PMC5282886

[57]

Sharma R,Kannourakis G,Prithviraj P.Targeting epithelial-mesenchymal transition (EMT), novel strategy to delay resistance or re-sensitize renal cancer to Sunitinib.Ann Oncol2019;30:ix73

[58]

Hwang HS,Park JM.Epithelial-mesenchymal transition as a mechanism of resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma.Lab Invest2019;99:659-70

[59]

Bridgeman VL,Foo S.Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models.J Pathol2017;241:362-74 PMCID:PMC5248628

[60]

Yun YR,Jeon E.Fibroblast growth factors: biology, function, and application for tissue regeneration.J Tissue Eng2010;2010:218142 PMCID:PMC3042641

[61]

Welti JC,Powles T.Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib.Oncogene2011;30:1183-93

[62]

Casanovas O,Bergers G.Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors.Cancer Cell2005;8:299-309

[63]

Fischer C,Mazzone M.Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels.Cell2007;131:463-75

[64]

Presta M,Mitola S,Ronca R.Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.Cytokine Growth Factor Rev2005;16:159-78

[65]

Birchmeier C,Gherardi E.Met, metastasis, motility and more.Nat Rev Mol Cell Biol2003;4:915-25

[66]

Weidner KM,Sachs M,Behrens J.Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis.Nature1996;384:173-6

[67]

Lai AZ,Park M.Crosstalk in Met receptor oncogenesis.Trends Cell Biol2009;19:542-51

[68]

Gherardi E,Birchmeier C.Targeting MET in cancer: rationale and progress.Nat Rev Cancer2012;12:89-103

[69]

Hara S,Klosek SK,Shintani S.Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells.Oral Oncol2006;42:593-8

[70]

Ide T,Miyoshi A.Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway.Int J Cancer2006;119:2750-9

[71]

Pennacchietti S,Galluzzo M,Giordano S.Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.Cancer Cell2003;3:347-61

[72]

Scarpino S,Di Napoli A,Marzullo A.Increased expression of met protein is associated with up-regulation of hypoxia inducible factor-1 (HIF-1) in tumour cells in papillary carcinoma of the thyroid.J Pathol2004;202:352-8

[73]

Huang X,Shen H.Targeting the HGF/MET axis in cancer therapy: challenges in resistance and opportunities for improvement.Front Cell Dev Biol2020;8:152 PMCID:PMC7218174

[74]

Glodde N,van den Boorn-Konijnenberg D.Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer Immunotherapy.Immunity2017;47:789-802.e9

[75]

Sequist LV,Dias-Santagata D.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Sci Transl Med2011;3:75ra26 PMCID:PMC3132801

[76]

Ohashi K,Michor F.Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease.J Clin Oncol2013;31:1070-80 PMCID:PMC3589701

[77]

Migliore C,Ghiso E.miR-205 mediates adaptive resistance to MET inhibition via ERRFI1 targeting and raised EGFR signaling.EMBO Mol Med2018;10:e8746 PMCID:PMC6127885

[78]

Hafizi S.Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases.Cytokine Growth Factor Rev2006;17:295-304

[79]

Graham DK,Davies KD.The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.Nat Rev Cancer2014;14:769-85

[80]

Paccez JD,Parker MI.The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications.Int J Cancer2014;134:1024-33

[81]

Hafizi S.Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily.FEBS J2006;273:5231-44

[82]

Korshunov VA.Axl-dependent signalling: a clinical update.Clin Sci2012;122:361-8 PMCID:PMC3609429

[83]

Gustafsson A,Dahlbäck B.Gas6-Axl signaling in presence of sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages.Exp Cell Res2017;355:47-56

[84]

Scheller J,Schmidt-Arras D.The pro- and anti-inflammatory properties of the cytokine interleukin-6.Biochim Biophys Acta2011;1813:878-88

[85]

Russo RC,Teixeira MM.The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases.Expert Rev Clin Immunol2014;10:593-619

[86]

Pilskog M,Edelmann RJ,Beisland C.Tumour cell expression of interleukin 6 receptor α is associated with response rates in patients treated with sunitinib for metastatic clear cell renal cell carcinoma.J Pathol Clin Res2018;4:114-23 PMCID:PMC5903692

[87]

Ishibashi K,Breuksch I.Overriding TKI resistance of renal cell carcinoma by combination therapy with IL-6 receptor blockade.Oncotarget2017;8:55230-45 PMCID:PMC5589655

[88]

Huang D,Zhou M.Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma.Cancer Res2010;70:1063-71 PMCID:PMC3719378

[89]

Martin D,Gutkind JS.CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex.J Biol Chem2009;284:6038-42 PMCID:PMC2649103

[90]

Tie Y,Wei YQ.Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets.J Hematol Oncol2022;15:61 PMCID:PMC9118588

[91]

Gabrilovich D.Mechanisms and functional significance of tumour-induced dendritic-cell defects.Nat Rev Immunol2004;4:941-52

[92]

Gabrilovich DI,Girgis KR.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.Nat Med1996;2:1096-103

[93]

Marigo I,Serafini P,Bronte V.Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells.Immunol Rev2008;222:162-79

[94]

Talmadge JE.Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy.Clin Cancer Res2007;13:5243-8

[95]

Ko JS,Ireland J.Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained.Cancer Res2010;70:3526-36 PMCID:PMC3426924

[96]

Finke J,Rini B,Ireland J.MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy.Int Immunopharmacol2011;11:856-61 PMCID:PMC3109226

[97]

Diaz-Montero CM,Barnard J.MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model.Br J Cancer2016;115:920-8 PMCID:PMC5061902

[98]

Ambrosetti D,Paoli C.Cancer-associated fibroblasts in renal cell carcinoma: implication in prognosis and resistance to anti-angiogenic therapy.BJU Int2022;129:80-92

[99]

Liu J,Hou J.New insights into M1/M2 macrophages: key modulators in cancer progression.Cancer Cell Int2021;21:389 PMCID:PMC8296555

[100]

He Z.Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment.Front Immunol2021;12:741305 PMCID:PMC8481680

[101]

Hakimi AA,Kuo F.Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase III trial.Cancer Discov2019;9:510-25 PMCID:PMC6697163

[102]

Nakano O,Naito Y.Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity.Cancer Res2001;61:5132-6

[103]

Liu XD,Zhou L.Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma.Cancer Immunol Res2015;3:1017-29 PMCID:PMC4561186

[104]

Park KY,Liu P,Kerr SC.Immune cell mediated cabozantinib resistance for patients with renal cell carcinoma.Integr Biol2021;13:259-68 PMCID:PMC8730366

[105]

He L.MicroRNAs: small RNAs with a big role in gene regulation.Nat Rev Genet2004;5:522-31

[106]

Chou CH,Shrestha S.miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database.Nucleic Acids Res2016;44:D239-47 PMCID:PMC4702890

[107]

Yamaguchi N,Onuma K.Identification of microRNAs involved in resistance to sunitinib in renal cell carcinoma cells.Anticancer Res2017;37:2985-92

[108]

Sharma R,Myers M,Prithviraj P.Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma.J Exp Clin Cancer Res2021;40:186 PMCID:PMC8183071

[109]

Marshall JS,Watson W.An introduction to immunology and immunopathology.Allergy Asthma Clin Immunol2018;14:49 PMCID:PMC6156898

[110]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[111]

de Velasco G,Voss MH.Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups.Cancer Immunol Res2016;4:820-2 PMCID:PMC5050137

[112]

Wang C,Yao T,Wang Z.The immune-related role of beta-2-microglobulin in melanoma.Front Oncol2022;12:944722 PMCID:PMC9421255

[113]

Veglia F.Dendritic cells in cancer: the role revisited.Curr Opin Immunol2017;45:43-51 PMCID:PMC5449252

[114]

Spranger S,Gajewski TF.Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.Nature2015;523:231-5

[115]

Posso-Osorio I,Cañas CA.Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases.J Transl Autoimmun2021;4:100137 PMCID:PMC8669383

[116]

Smith CC,Bortone DS.Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma.J Clin Invest2018;128:4804-20 PMCID:PMC6205406

[117]

Peng W,Liu C.Loss of PTEN promotes resistance to T cell-mediated immunotherapy.Cancer Discov2016;6:202-16 PMCID:PMC4744499

[118]

Shin DS,Escuin-Ordinas H.Primary resistance to PD-1 blockade mediated by JAK1/2 mutations.Cancer Discov2017;7:188-201 PMCID:PMC5296316

[119]

Lin E,Liu Y.Roles of the dynamic tumor immune microenvironment in the individualized treatment of advanced clear cell renal cell carcinoma.Front Immunol2021;12:653358 PMCID:PMC7970116

[120]

Komohara Y,Ohnishi K.Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma.Cancer Sci2011;102:1424-31

[121]

Kaneda MM,Ralainirina N.PI3Kγ is a molecular switch that controls immune suppression.Nature2016;539:437-42 PMCID:PMC5479689

[122]

Togashi Y,Nishikawa H.Regulatory T cells in cancer immunosuppression - implications for anticancer therapy.Nat Rev Clin Oncol2019;16:356-71

[123]

Serrels A,Serrels B.Nuclear FAK controls chemokine transcription, tregs, and evasion of anti-tumor immunity.Cell2015;163:160-73 PMCID:PMC4597190

[124]

Togashi Y,Sasaki A.Clinicopathological, genomic and immunological features of hyperprogressive disease during PD-1 blockade in gastric cancer patients.J Clin Oncol2018;36:4106-4106

[125]

Lowther DE,Lucca LE.PD-1 marks dysfunctional regulatory T cells in malignant gliomas.JCI Insight2016;1:e85935 PMCID:PMC4864991

[126]

John P,Galbo PM Jr.The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy.Nat Commun2022;13:2506 PMCID:PMC9076640

[127]

Weber R,Hu X.Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors.Front Immunol2018;9:1310 PMCID:PMC6004385

[128]

Norian LA,O’Mara LA.Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism.Cancer Res2009;69:3086-94 PMCID:PMC2848068

[129]

Liu Q,Sun A,Wang L.Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I.J Immunol2009;182:6207-16

[130]

Beuselinck B,Becht E.Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting.Clin Cancer Res2015;21:1329-39

[131]

Vano YA,Bennamoun M.Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial.Lancet Oncol2022;23:612-24

[132]

Piva F,Matrana MR.BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.Expert Rev Mol Diagn2015;15:1201-10

[133]

Hakimi AA,Wren J.Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma.Eur Urol2013;63:848-54 PMCID:PMC3615105

[134]

Peña-Llopis S,Xie XJ.Cooperation and antagonism among cancer genes: the renal cancer paradigm.Cancer Res2013;73:4173-9 PMCID:PMC4051157

[135]

Miao D,Gao W.Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.Science2018;359:801-6 PMCID:PMC6035749

[136]

Wang T,Kapur P.An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors.Cancer Discov2018;8:1142-55 PMCID:PMC6125163

[137]

Kroemer G.Cancer immunotherapy in 2017: The breakthrough of the microbiota.Nat Rev Immunol2018;18:87-8

[138]

Routy B,Derosa L.Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.Science2018;359:91-7

[139]

Derosa L,Spaziano M.Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer.Ann Oncol2018;29:1437-44 PMCID:PMC6354674

[140]

Elkrief A,Richard C.Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors.Oncoimmunology2019;8:e1568812 PMCID:PMC6422373

[141]

Derosa L,Fidelle M.Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients.Eur Urol2020;78:195-206

[142]

Zaretsky JM,Shin DS.mutations associated with acquired resistance to PD-1 blockade in melanoma.N Engl J Med2016;375:819-29 PMCID:PMC5007206

[143]

Schrörs B,Lennerz V.HLA class I loss in metachronous metastases prevents continuous T cell recognition of mutated neoantigens in a human melanoma model.Oncotarget2017;8:28312-27 PMCID:PMC5438652

[144]

Romero I,Algarra I.MHC intratumoral heterogeneity may predict cancer progression and response to immunotherapy.Front Immunol2018;9:102 PMCID:PMC5796886

[145]

del Campo AB,Carretero J.Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma.Int J Cancer2014;134:102-13

[146]

Bernal M,Concha A,Garrido F.Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes.Cancer Immunol Immunother2012;61:1359-71

[147]

Park HJ,Jeong YH.PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells.J Immunol2015;194:5801-11

[148]

Jin HT,Tan WG.Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection.Proc Natl Acad Sci U S A2010;107:14733-8 PMCID:PMC2930455

[149]

Ahmadzadeh M,Heemskerk B.Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired.Blood2009;114:1537-44 PMCID:PMC2927090

[150]

Kumagai S,Kamada T.The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies.Nat Immunol2020;21:1346-58

[151]

Mori K,Mostafaei H.The predictive value of programmed death ligand 1 in patients with metastatic renal cell carcinoma treated with immune-checkpoint inhibitors: a systematic review and meta-analysis.Eur Urol2021;79:783-92

[152]

Andrews LP,Drake CG.LAG3 (CD223) as a cancer immunotherapy target.Immunol Rev2017;276:80-96 PMCID:PMC5338468

[153]

Donia M,Kjeldsen JW.Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific CD4+ T- Cells, which dampen CD8+ T-cell antitumor reactivity.Cancer Res2015;75:3747-59

[154]

Kouo T,Pucsek AB.Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells.Cancer Immunol Res2015;3:412-23 PMCID:PMC4390508

[155]

Xu F,Liu D.LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses.Cancer Res2014;74:3418-28

[156]

Zelba H,Hennenlotter J.PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma.Cancer Immunol Res2019;7:1891-9

[157]

Das M,Kuchroo VK.Tim-3 and its role in regulating anti-tumor immunity.Immunol Rev2017;276:97-111 PMCID:PMC5512889

[158]

Zhu C,Schubart A.The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity.Nat Immunol2005;6:1245-52

[159]

Huang YH,Kondo Y.CEACAM1 regulates TIM-3-mediated tolerance and exhaustion.Nature2015;517:386-90

[160]

Prokhorov A,Bardelli M.The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells.Int J Biochem Cell Biol2015;59:11-20

[161]

Wang JM,Li GY.Tim-3 alters the balance of IL-12/IL-23 and drives TH17 cells: role in hepatitis B vaccine failure during hepatitis C infection.Vaccine2013;31:2238-45 PMCID:PMC3667544

[162]

Wang JM,Ma CJ.Differential regulation of interleukin-12 (IL-12)/IL-23 by Tim-3 drives T(H)17 cell development during hepatitis C virus infection.J Virol2013;87:4372-83 PMCID:PMC3624368

[163]

Ma CJ,Cheng YQ.Cis association of galectin-9 with Tim-3 differentially regulates IL-12/IL-23 expressions in monocytes via TLR signaling.PLoS One2013;8:e72488 PMCID:PMC3743775

[164]

Dardalhon V,Karman J.Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells.J Immunol2010;185:1383-92 PMCID:PMC2925247

[165]

Sakuishi K,Sullivan JM.TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer.Oncoimmunology2013;2:e23849 PMCID:PMC3654601

[166]

Sakuishi K,Sullivan JM,Kuchroo VK.Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.J Exp Med2010;207:2187-94 PMCID:PMC2947065

[167]

Mohsenzadegan M,Fotovvat A.The prospect of targeting T cell immunoglobulin and mucin-domain containing-3 in renal cell carcinoma immunotherapy.Scand J Immunol2022;96:e13197

[168]

Pignon JC,Shukla SA.irRECIST for the evaluation of candidate biomarkers of response to nivolumab in metastatic clear cell renal cell carcinoma: analysis of a phase II prospective clinical trial.Clin Cancer Res2019;25:2174-84 PMCID:PMC6445699

[169]

Mitchell TJ,Rowan A.Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal.Cell2018;173:611-23.e17 PMCID:PMC5927631

[170]

Turajlic S,Litchfield K.Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal.Cell2018;173:581-94.e12 PMCID:PMC5938365

[171]

Kowalewski A,Grzanka D.Targeting the deterministic evolutionary trajectories of clear cell renal cell carcinoma.Cancers2020;12:3300 PMCID:PMC7695334

[172]

Caravagna G,Ramazzotti D.Detecting repeated cancer evolution from multi-region tumor sequencing data.Nat Methods2018;15:707-14 PMCID:PMC6380470

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/