Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system

Xiangyu Sun , Ping Zhao , Jierou Lin , Kun Chen , Jianliang Shen

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) : 390 -415.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) :390 -415. DOI: 10.20517/cdr.2023.16
review-article

Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system

Author information +
History +
PDF

Abstract

Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.

Keywords

Cancer / nanomedicine / nanomaterials / drug delivery / multidrug resistance

Cite this article

Download citation ▾
Xiangyu Sun, Ping Zhao, Jierou Lin, Kun Chen, Jianliang Shen. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer Drug Resistance, 2023, 6(2): 390-415 DOI:10.20517/cdr.2023.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Jemal A.Cancer statistics, 2020.CA Cancer J Clin2020;70:7-30

[2]

WHO report on cancer: setting priorities, investing wisely and providing care for all. Available from: https://www.who.int/publications/i/item/9789240001299.[Last accessed on 13 Jun 2023]

[3]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[4]

Phan TG.The dormant cancer cell life cycle.Nat Rev Cancer2020;20:398-411

[5]

Assaraf YG,Gonçalves AC.The multi-factorial nature of clinical multidrug resistance in cancer.Drug Resist Updat2019;46:100645

[6]

Riley RS,Langer R.Delivery technologies for cancer immunotherapy.Nat Rev Drug Discov2019;18:175-96 PMCID:PMC6410566

[7]

Asano T.Drug resistance in cancer therapy and the role of epigenetics.J Nippon Med Sch2020;87:244-51

[8]

Li Y.Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance.J Control Release2020;323:483-501

[9]

Luqmani YA.Mechanisms of drug resistance in cancer chemotherapy.Med Princ Pract2005;14 Suppl 1:35-48

[10]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[11]

Marine JC,Dawson MA.Non-genetic mechanisms of therapeutic resistance in cancer.Nat Rev Cancer2020;20:743-56

[12]

Wein L.Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC).Breast2017;34 Suppl 1:S27-30

[13]

Sun Q,Wang Z,Zhao W.Primary and acquired resistance against immune check inhibitors in non-small cell lung cancer.Cancers2022;14:3294 PMCID:PMC9316464

[14]

Mullard A.Stemming the tide of drug resistance in cancer.Nat Rev Drug Discov2020;19:221-3

[15]

Gerard L,Gillet JP.Targeting tumor resistance mechanisms.Fac Rev2021;10:6 PMCID:PMC7894262

[16]

Bukowski K,Kontek R.Mechanisms of multidrug resistance in cancer chemotherapy.Int J Mol Sci2020;21:3233 PMCID:PMC7247559

[17]

Mohammad IS,Yin L.Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR.Biomed Pharmacother2018;100:335-48

[18]

Amawi H,Tiwari AK,Shukla S.ABC transporter-mediated multidrug-resistant cancer.Adv Exp Med Biol2019;1141:549-80

[19]

Raggers RJ,van Meer G.Multidrug-resistance p-glycoprotein (MDR1) secretes platelet-activating factor.Biochem J2001;357:859-65 PMCID:PMC1222017

[20]

Low FG,Brown JE,Rothnie AJ.Roles of ABCC1 and ABCC4 in proliferation and migration of breast cancer cell lines.Int J Mol Sci2020;21:7664 PMCID:PMC7589126

[21]

Zhang YS,Han L,Liu YJ.Expression of BCRP/ABCG2 protein in invasive breast cancer and response to neoadjuvant chemotherapy.Oncol Res Treat2022;45:94-101

[22]

Heming C, Muriithi W, Wanjiku Macharia L, Niemeyer Filho P, Moura-Neto V, Aran V. P-glycoprotein and cancer: what do we currently know?.Heliyon2022;8:e11171 PMCID:PMC9618987

[23]

Natarajan K,Baer MR.Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance.Biochem Pharmacol2012;83:1084-103 PMCID:PMC3307098

[24]

Kamburoğlu G,Söylemezoğlu F.Clinicopathological parameters and expression of p-glycoprotein and MRP-1 in retinoblastoma.Ophthalmic Res2007;39:191-7

[25]

Yusuf RZ,Lamendola DE,Seiden MV.Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation.Curr Cancer Drug Targets2003;3:1-19

[26]

Harmsen S,Febus CL,Beijnen JH.PXR-mediated induction of p-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line.Cancer Chemother Pharmacol2010;66:765-71 PMCID:PMC2904455

[27]

Rivankar S.An overview of doxorubicin formulations in cancer therapy.J Cancer Res Ther2014;10:853-8

[28]

Passiglia F,Del Re M.KRAS inhibition in non-small cell lung cancer: past failures, new findings and upcoming challenges.Eur J Cancer2020;137:57-68

[29]

Huang W,Xu S.Design, synthesis, and tumor drug resistance reversal activity of novel hederagenin derivatives modified by nitrogen-containing heterocycles.Eur J Med Chem2022;232:114207

[30]

Trédan O,Patel K.Drug resistance and the solid tumor microenvironment.J Natl Cancer Inst2007;99:1441-54

[31]

Wu G,Cheng Y.Targeting Gas6/TAM in cancer cells and tumor microenvironment.Mol Cancer2018;17:20 PMCID:PMC5793417

[32]

Al-Akra L,Leck LYW,Jansson PJ.The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance.Biochim Biophys Acta Gen Subj2019;1863:1390-7

[33]

Liu C,Qu Z.Tumor microenvironment: hypoxia and buffer capacity for immunotherapy.Med Hypotheses2007;69:590-5

[34]

Nasr R,Khonkarn R.Molecular analysis of the massive GSH transport mechanism mediated by the human multidrug resistant protein 1/ABCC1.Sci Rep2020;10:7616 PMCID:PMC7203140

[35]

Koltai T.The complex relationship between multiple drug resistance and the tumor pH gradient: a review.Cancer Drug Resist2022;5:277-303 PMCID:PMC9255250

[36]

Li D,Chen P.Notch1 signaling modulates hypoxia-induced multidrug resistance in human laryngeal cancer cells.Mol Biol Rep2022;49:6235-40

[37]

Semenza GL.HIF-1 and tumor progression: pathophysiology and therapeutics.Trends Mol Med2002;8:S62-7

[38]

Bergandi L,Pittatore G.Human recombinant FSH induces chemoresistance in human breast cancer cells via HIF-1α activation†.Biol Reprod2019;100:1521-35

[39]

Cen J,Liu F,Ji BS.Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells.Oxid Med Cell Longev2016;2016:7053451 PMCID:PMC5183793

[40]

Bansal A.Glutathione metabolism in cancer progression and treatment resistance.J Cell Biol2018;217:2291-8 PMCID:PMC6028537

[41]

Xiao X,Zong Q,Dong Y.Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal.Biomaterials2021;270:120649

[42]

Chen C,Yan S.Autophagy and doxorubicin resistance in cancer.Anticancer Drugs2018;29:1-9

[43]

Marchi S,Galluzzi L.Ca2+ fluxes and cancer.Mol Cell2020;78:1055-69

[44]

Büsselberg D.Targeting intracellular calcium signaling ([Ca2+]i) to overcome acquired multidrug resistance of cancer cells: a mini-overview.Cancers2017;9:48 PMCID:PMC5447958

[45]

Zhong T,Guo H.The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies.Acta Pharm Sin B2022;12:1761-80 PMCID:PMC9279634

[46]

Boumahdi S.The great escape: tumour cell plasticity in resistance to targeted therapy.Nat Rev Drug Discov2020;19:39-56

[47]

Tata PR.Cellular plasticity: 1712 to the present day.Curr Opin Cell Biol2016;43:46-54 PMCID:PMC5154913

[48]

Sequist LV,Dias-Santagata D.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Sci Transl Med2011;3:75ra26 PMCID:PMC3132801

[49]

Marcoux N,O’Kane G.EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes.J Clin Oncol2019;37:278-85 PMCID:PMC7001776

[50]

Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression.Nat Rev Cancer2013;13:97-110

[51]

Dongre A.New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer.Nat Rev Mol Cell Biol2019;20:69-84

[52]

Ribatti D,Annese T.Epithelial-mesenchymal transition in cancer: a historical overview.Transl Oncol2020;13:100773 PMCID:PMC7182759

[53]

Wilson MM,Lees JA.Emerging mechanisms by which EMT programs control stemness.Trends Cancer2020;6:775-80

[54]

Yang J.Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis.Dev Cell2008;14:818-29

[55]

Moustakas A.Induction of epithelial-mesenchymal transition by transforming growth factor β.Semin Cancer Biol2012;22:446-54

[56]

Francesco EM, Maggiolini M, Musti AM. Crosstalk between notch, HIF-1α and GPER in breast cancer EMT.Int J Mol Sci2018;19:2011 PMCID:PMC6073901

[57]

Hernandez-Alias X,Schaefer MH.Translational efficiency across healthy and tumor tissues is proliferation-related.Mol Syst Biol2020;16:e9275 PMCID:PMC7061310

[58]

Li GW,Gross C.Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources.Cell2014;157:624-35 PMCID:PMC4006352

[59]

Dörr JR,Milanovic M.Synthetic lethal metabolic targeting of cellular senescence in cancer therapy.Nature2013;501:421-5

[60]

Goldman A,Freinkman E.Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance.Sci Signal2019;12:eaas8779 PMCID:PMC7261372

[61]

Anand A,Yang L.Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration.Proc Natl Acad Sci U S A2019;116:25287-92 PMCID:PMC6911176

[62]

Hangauer MJ,Ryan MJ.Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.Nature2017;551:247-50 PMCID:PMC5933935

[63]

Raha D,Peng J.The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation.Cancer Res2014;74:3579-90

[64]

Yan F,Zhang Z.A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors.Cell Res2018;28:1062-76 PMCID:PMC6218444

[65]

Neophytou CM,Erin N.Apoptosis deregulation and the development of cancer multi-drug resistance.Cancers2021;13:4363 PMCID:PMC8430856

[66]

Chang YT,Lin KI.Danazol mediates collateral sensitivity via STAT3/Myc related pathway in multidrug-resistant cancer cells.Sci Rep2019;9:11628 PMCID:PMC6690972

[67]

Narayanan S,Assaraf YG.Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance.Drug Resist Updat2020;48:100663

[68]

Yang T,Sheng Y,Chen Y.A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.Anal Bioanal Chem2016;408:7491-503

[69]

Bose P,Konopleva M.Pathways and mechanisms of venetoclax resistance.Leuk Lymphoma2017;58:1-17 PMCID:PMC5478500

[70]

Lin FZ,Hsi YT.Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway.Phytomedicine2019;54:1-8

[71]

Geelen CM, de Vries EG, de Jong S. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy.Drug Resist Updat2004;7:345-58

[72]

Long W,Wang Y,Wang L.Research progress and prospects of autophagy in the mechanism of multidrug resistance in tumors.J Oncol2022;2022:7032614 PMCID:PMC8818414

[73]

Mizushima N.Autophagy: process and function.Genes Dev2007;21:2861-73

[74]

Li X,Li Y.Autophagy: a novel mechanism of chemoresistance in cancers.Biomed Pharmacother2019;119:109415

[75]

Sui X,Wang Z.Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment.Cell Death Dis2013;4:e838 PMCID:PMC3824660

[76]

Xiao X,Li Y.HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma.J Exp Clin Cancer Res2018;37:201 PMCID:PMC6114771

[77]

Gong C,Gu F.Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment.J Control Release2017;266:272-86

[78]

Battista RA,Facchi C.Autophagy mediates epithelial cancer chemoresistance by reducing p62/SQSTM1 accumulation.PLoS One2018;13:e0201621 PMCID:PMC6070274

[79]

Zhang H.Tampering with cancer chemoresistance by targeting the TGM2-IL6-autophagy regulatory network.Autophagy2017;13:627-8 PMCID:PMC5361602

[80]

Sethy C.5-fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition.Biomed Pharmacother2021;137:111285

[81]

Goldstein M.The DNA damage response: implications for tumor responses to radiation and chemotherapy.Annu Rev Med2015;66:129-43

[82]

Chatterjee N.Mechanisms of DNA damage, repair, and mutagenesis.Environ Mol Mutagen2017;58:235-63 PMCID:PMC5474181

[83]

Kelley MR,Fishel ML.Targeting DNA repair pathways for cancer treatment: what’s new?.Future Oncol2014;10:1215-37 PMCID:PMC4125008

[84]

Gentile F,Ciniero G.Computer-aided drug design of small molecule inhibitors of the ERCC1-XPF protein-protein interaction.Chem Biol Drug Des2020;95:460-71

[85]

Arnold CN,Boland CR.Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines.Int J Cancer2003;106:66-73

[86]

Yang B,Shi R.TGFB2 serves as a link between epithelial-mesenchymal transition and tumor mutation burden in gastric cancer.Int Immunopharmacol2020;84:106532

[87]

Wang YJ,Zhang GN.Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: in vitro and in vivo study.Cancer Lett2017;396:145-54 PMCID:PMC5507680

[88]

Zhou J,Li Q.Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies.J Exp Clin Cancer Res2021;40:328 PMCID:PMC8522158

[89]

Wang F,Liu B,Wu HZ.Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways.J Transl Med2022;20:310 PMCID:PMC9258109

[90]

Prvanović M,Tanić N.Role of PTEN, PI3K, and mTOR in triple-negative breast cancer.Life2021;11:1247 PMCID:PMC8621563

[91]

Li Y,Zhang H.Clinical significance of P16 gene methylation in lung cancer.Adv Exp Med Biol2020;1255:133-42

[92]

Shi Y,Chen X.The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.Theranostics2020;10:7921-4 PMCID:PMC7359085

[93]

Wei G,Yang G,Ju R.Recent progress in nanomedicine for enhanced cancer chemotherapy.Theranostics2021;11:6370-92 PMCID:PMC8120226

[94]

Kalave S,Juvale K.Applications of nanotechnology-based approaches to overcome multi-drug resistance in cancer.Curr Pharm Des2022;28:3140-57

[95]

Shubhra QT,Feczkó T.Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: part I. effect of process variables on the mean size.J Microencapsul2014;31:147-55

[96]

Wang C,Zhang T,Sun Y.Recent advances in anti-multidrug resistance for nano-drug delivery system.Drug Deliv2022;29:1684-97 PMCID:PMC9154776

[97]

Wang Z,Li S.The role of NIR fluorescence in MDR cancer treatment: from targeted imaging to phototherapy.Curr Med Chem2020;27:5510-29

[98]

Salto-Tellez M.Cancer taxonomy: pathology beyond pathology.Eur J Cancer2019;115:57-60

[99]

Tuazon SA,Nadeem O.A clinical perspective on plasma cell leukemia; current status and future directions.Blood Cancer J2021;11:23 PMCID:PMC7873074

[100]

Liu S,Yang X,Ji J.The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy.J Control Release2021;335:1-20

[101]

Rowe JM.Perspectives on current survival and new developments in AML.Best Pract Res Clin Haematol2021;34:101248

[102]

Seiden MV,Astrow A.A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer.Gynecol Oncol2004;93:229-32

[103]

Guo W,Khan S,Ahmad I.Paclitaxel quantification in mouse plasma and tissues containing liposome-entrapped paclitaxel by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetics study.Anal Biochem2005;336:213-20

[104]

Dragovich T,Kurtin S,Von Hoff D.A phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer.Cancer Chemother Pharmacol2006;58:759-64

[105]

Neville ME,Pflug LE,Robb RJ.Biopharmaceutics of liposomal interleukin 2, oncolipin.Cytokine2000;12:1691-701

[106]

Thomson AH,Murray LS.Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours.Br J Cancer1999;81:99-107 PMCID:PMC2374352

[107]

Greenwald RB,McGuire J.Effective drug delivery by PEGylated drug conjugates.Adv Drug Deliv Rev2003;55:217-50

[108]

Boddy AV,Todd R.A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules.Clin Cancer Res2005;11:7834-40

[109]

Libutti SK,Byrnes AA.Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine.Clin Cancer Res2010;16:6139-49 PMCID:PMC3004980

[110]

Chen B,He B.Current multistage drug delivery systems based on the tumor microenvironment.Theranostics2017;7:538-58 PMCID:PMC5327631

[111]

Ho BN,Singh ATK.Update on nanotechnology-based drug delivery systems in cancer treatment.Anticancer Res2017;37:5975-81

[112]

Sun R,Zhou Q.The tumor EPR effect for cancer drug delivery: current status, limitations, and alternatives.Adv Drug Deliv Rev2022;191:114614

[113]

Bort G,Dufort S,Verry C.EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles.Theranostics2020;10:1319-31 PMCID:PMC6956799

[114]

Mu LM,Liu R.Dual-functional drug liposomes in treatment of resistant cancers.Adv Drug Deliv Rev2017;115:46-56

[115]

Barenholz Y.Doxil® - the first FDA-approved nano-drug: lessons learned.J Control Release2012;160:117-34

[116]

Silverman JA.Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine.Cancer Chemother Pharmacol2013;71:555-64 PMCID:PMC3579462

[117]

Li M,Guo N.Composition design and medical application of liposomes.Eur J Med Chem2019;164:640-53

[118]

Guimarães D,Nogueira E.Design of liposomes as drug delivery system for therapeutic applications.Int J Pharm2021;601:120571

[119]

Almeida B,Rogers KE.Recent progress in bioconjugation strategies for liposome-mediated drug delivery.Molecules2020;25:5672 PMCID:PMC7730700

[120]

Li N,Liu Q,Yang J.Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance.Drug Deliv Transl Res2021;11:131-41

[121]

Wang R,He W,Lu E.Pulmonary surfactants affinity pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer.Int J Pharm2021;607:120973

[122]

Xu C,Zheng Y.Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer.J Mater Chem B2020;8:2726-37

[123]

Popova M,Momekov G.Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR in cancer cells.Eur J Pharm Biopharm2019;142:460-72

[124]

Qian J,Yang T.Polyethyleneimine - tocopherol hydrogen succinate/hyaluronic acid-quercetin (PEI-TOS/HA-QU) core-shell micelles delivering paclitaxel for combinatorial treatment of MDR breast cancer.J Biomed Nanotechnol2021;17:382-98

[125]

Li W,Li S.Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance.Mater Sci Eng C Mater Biol Appl2019;105:110047

[126]

Zou L,Hu Y.Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles.Oncotarget2017;8:60453-68 PMCID:PMC5601152

[127]

Chen Y,Fang DL.Correction: Yan Chen, et al. dual agent loaded PLGA nanoparticles enhanced antitumor activity in a multidrug-resistant breast tumor eenograft model. Int. J. Mol. Sci. 2014, 15, 2761-2772.Int J Mol Sci2016;17:1233 PMCID:PMC5000631

[128]

Kesharwani SS,Tummala H.Overcoming multiple drug resistance in cancer using polymeric micelles.Expert Opin Drug Deliv2018;15:1127-42

[129]

Zarrintaj P,Samadi A.Poloxamer: a versatile tri-block copolymer for biomedical applications.Acta Biomater2020;110:37-67

[130]

Guo K,Tang L.Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance.Chem Eng J2022;428:131120

[131]

Ahn HK,Sym SJ.A phase II trial of cremorphor EL-free paclitaxel (genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer.Cancer Chemother Pharmacol2014;74:277-82 PMCID:PMC4112044

[132]

Park IH,Kim SB.An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer.Cancer Res Treat2017;49:569-77 PMCID:PMC5512366

[133]

Wang Y.Polymeric nanomaterials for efficient delivery of antimicrobial agents.Pharmaceutics2021;13:2108 PMCID:PMC8709338

[134]

Bober Z,Aebisher D.Application of dendrimers in anticancer diagnostics and therapy.Molecules2022;27:3237 PMCID:PMC9144149

[135]

Pan J,Yao M.Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance.Eur J Pharm Biopharm2019;136:18-28 PMCID:PMC6377860

[136]

Patil ML,Taratula O,He H.Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting.Biomacromolecules2009;10:258-66 PMCID:PMC2653103

[137]

Wang M,HuangFu M.Pluronic-attached polyamidoamine dendrimer conjugates overcome drug resistance in breast cancer.Nanomedicine2016;11:2917-34

[138]

Yin J,Zhang J.Current understanding of interactions between nanoparticles and ABC transporters in cancer cells.Curr Med Chem2018;25:5930-44

[139]

Su Z,Zhao SC.Novel nanomedicines to overcome cancer multidrug resistance.Drug Resist Updat2021;58:100777

[140]

Igaz N,Kovács D.Functionalized mesoporous silica nanoparticles for drug-delivery to multidrug-resistant cancer cells.Int J Nanomedicine2022;17:3079-96 PMCID:PMC9293248

[141]

Curcio M,Saletta F.Functionalized carbon nanostructures versus drug resistance: promising scenarios in cancer treatment.Molecules2020;25:2102 PMCID:PMC7249046

[142]

Vangijzegem T,Laurent S.Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics.Expert Opin Drug Deliv2019;16:69-78

[143]

Wang L,Wang Z,Zhang J.Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug delivery.Mol Pharm2018;15:2503-12

[144]

Norouzi M,Thliveris JA,Siahaan TJ.Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles.Sci Rep2020;10:11292 PMCID:PMC7347880

[145]

Daniyal M,Wang W.Comprehensive review on graphene oxide for use in drug delivery system.Curr Med Chem2020;27:3665-85

[146]

Li Y,Yu Z.Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy.ACS Appl Mater Interfaces2018;10:15461-6

[147]

Song J,Jacobson O.Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy.Adv Mater2015;27:4910-7

[148]

Wang Y,Liu Y.Glutathione detonated and pH responsive nano-clusters of Au nanorods with a high dose of DOX for treatment of multidrug resistant cancer.Acta Biomater2018;75:334-45

[149]

Pérez-Herrero E.Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy.Eur J Pharm Biopharm2015;93:52-79

[150]

MacCuaig WM,McNally MW.Active targeting significantly outperforms nanoparticle size in facilitating tumor-specific uptake in orthotopic pancreatic cancer.ACS Appl Mater Interfaces2021;13:49614-30 PMCID:PMC9783196

[151]

Liu Q,Pu G,Liu H.Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy.Drug Deliv2016;23:1364-8

[152]

Liu X,Xu Y.Co-administration of paclitaxel and 2-methoxyestradiol using folate-conjugated human serum albumin nanoparticles for improving drug resistance and antitumor efficacy.Pharm Dev Technol2021;26:1-10

[153]

Steinbichler TB,Skvortsov S,Riechelmann H.Therapy resistance mediated by exosomes.Mol Cancer2019;18:58 PMCID:PMC6441190

[154]

Shome R.Transferrin coated d-penicillamine-Au-Cu nanocluster PLGA nanocomposite reverses hypoxia-induced EMT and MDR of triple-negative breast cancers.ACS Appl Bio Mater2021;4:5033-48

[155]

Erin N,Brozovic A.Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance.Drug Resist Updat2020;53:100715

[156]

Zhu G.Aptamer-based targeted therapy.Adv Drug Deliv Rev2018;134:65-78 PMCID:PMC6239901

[157]

Zhou G,Hebbard L.Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers.Adv Drug Deliv Rev2018;134:107-21

[158]

Shi RZ,Wen J.Epithelial cell adhesion molecule promotes breast cancer resistance protein-mediated multidrug resistance in breast cancer by inducing partial epithelial-mesenchymal transition.Cell Biol Int2021;45:1644-53

[159]

Farahmand L,Jalili N,Majidzadeh-A K.Significant role of MUC1 in development of resistance to currently existing anti-cancer therapeutic agents.Curr Cancer Drug Targets2018;18:737-48

[160]

Zhang H,Li F.Thermo and pH dual-controlled charge reversal amphiphilic graft copolymer micelles for overcoming drug resistance in cancer cells.J Mater Chem B2015;3:4585-96

[161]

Jin Y,Wang H.EGFR/HER2 inhibitors effectively reduce the malignant potential of MDR breast cancer evoked by P-gp substrates in vitro and in vivo.Oncol Rep2016;35:771-8

[162]

Moosavian SA,Akhtari J,Gholamzade Dewin A.5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells.Artif Cells Nanomed Biotechnol2018;46:2054-65

[163]

Luo S,Luo N,Hu C.The application of aptamer 5TR1 in triple negative breast cancer target therapy.J Cell Biochem2018;119:896-908

[164]

Pan Q,Hu Y.Aptamer-functionalized DNA origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells.ACS Appl Mater Interfaces2020;12:400-9

[165]

Li X,Yang H,Ye Z.A nuclear targeted dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer.Biomed Pharmacother2019;117:109072

[166]

Shapira A,Broxterman HJ.Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.Drug Resist Updat2011;14:150-63

[167]

Khan MM.Recent trends in nanomedicine-based strategies to overcome multidrug resistance in tumors.Cancers2022;14:4123 PMCID:PMC9454760

[168]

Limtrakul P.Curcumin as chemosensitizer.Adv Exp Med Biol2007;595:269-300

[169]

Yan H,Wang R.Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance.Colloids Surf B Biointerfaces2021;205:111914

[170]

Al-Ali AAA,Steffansen B,Nielsen CU.Nonionic surfactants modulate the transport activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC): relevance to oral drug absorption.Int J Pharm2019;566:410-33

[171]

Cho HJ,Kim DD.Poly(lactic-co-glycolic) acid/solutol HS15-based nanoparticles for docetaxel delivery.J Nanosci Nanotechnol2016;16:1433-6

[172]

Zhang J,Wang M.Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells.J Nanobiotechnology2021;19:135 PMCID:PMC8114490

[173]

Mao X,Huang Q.Self-assembling doxorubicin prodrug forming nanoparticles and effectively reversing drug resistance in vitro and in vivo.Adv Healthc Mater2016;5:2517-27

[174]

Suo X,Zhang H.P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes.ACS Appl Mater Interfaces2018;10:33464-73 PMCID:PMC6200400

[175]

Singh SK,Singh R.Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer.Cancer Lett2018;427:49-62 PMCID:PMC5953846

[176]

Dai L,Zhang J.Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis.Carbohydr Polym2018;180:122-7

[177]

Deng S,Zhou M,Fu Q.Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.Carbohydr Polym2016;154:129-38

[178]

Bertheloot D,Franklin BS.Necroptosis, pyroptosis and apoptosis: an intricate game of cell death.Cell Mol Immunol2021;18:1106-21 PMCID:PMC8008022

[179]

Wang H,Wei H.Targeting MCL-1 in cancer: current status and perspectives.J Hematol Oncol2021;14:67 PMCID:PMC8061042

[180]

Tse C,Adickes J.ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.Cancer Res2008;68:3421-8

[181]

Kotschy A,Murray J.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.Nature2016;538:477-82

[182]

Vivo-Llorca G,Alfonso M.MUC1 aptamer-capped mesoporous silica nanoparticles for navitoclax resistance overcoming in triple-negative breast cancer.Chemistry2020;26:16318-27

[183]

Dhanasekaran R,Mahauad-Fernandez WD,Gouw AM.The MYC oncogene - the grand orchestrator of cancer growth and immune evasion.Nat Rev Clin Oncol2022;19:23-36 PMCID:PMC9083341

[184]

Wang Z,Meng X,Liu H.Suppression of c-Myc is involved in multi-walled carbon nanotubes’ down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.Toxicol Appl Pharmacol2015;282:42-51

[185]

Bansal T,Khar RK.Emerging significance of flavonoids as p-glycoprotein inhibitors in cancer chemotherapy.J Pharm Pharm Sci2009;12:46-78

[186]

Daddam JR,Panthangi S.Molecular docking and p-glycoprotein inhibitory activity of flavonoids.Interdiscip Sci2014;6:167-75

[187]

Desale JP,Kushwah V,Jain S.Chemosensitizer and docetaxel-loaded albumin nanoparticle: overcoming drug resistance and improving therapeutic efficacy.Nanomedicine2018;13:2759-76

[188]

Abdallah HM,El-Dine RS.P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review.J Adv Res2015;6:45-62 PMCID:PMC4293676

[189]

Sun JH,Bai EH.Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro.Nanotechnology2019;30:085101

[190]

Rahimi P,Kamalzare S,Vahabpour R.Comparison of transfection efficiency of polymer-based and lipid-based transfection reagents.Bratisl Lek Listy2018;119:701-5

[191]

Wang S.High transfection efficiency and cell viability of immune cells with nanomaterials-based transfection reagent.Biotechniques2022;72:219-24

[192]

Zaimy MA,Mohammadi A.New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles.Cancer Gene Ther2017;24:233-43

[193]

Charbe NB,Ramesh B.Small interfering RNA for cancer treatment: overcoming hurdles in delivery.Acta Pharm Sin B2020;10:2075-109 PMCID:PMC7714980

[194]

Yalamarty SSK,Li X,Cotter C.Co-delivery of siRNA and chemotherapeutic drug using 2C5 antibody-targeted dendrimer-based mixed micelles for multidrug resistant cancers.Pharmaceutics2022;14:1470 PMCID:PMC9324017

[195]

Wei S,Zhang M,Li W.Dual delivery nanoscale device for miR-451 and adriamycin co-delivery to combat multidrug resistant in bladder cancer.Biomed Pharmacother2020;122:109473

[196]

Yang X,Chen S,Cui C.Cetuximab-modified human serum albumin nanoparticles co-loaded with doxorubicin and MDR1 siRNA for the treatment of drug-resistant breast tumors.Int J Nanomedicine2021;16:7051-69 PMCID:PMC8528549

[197]

Zhou YJ,Tong Y.Stimuli-responsive nanoparticles for the codelivery of chemotherapeutic agents doxorubicin and siPD-L1 to enhance the antitumor effect.J Biomed Mater Res B Appl Biomater2020;108:1710-24

[198]

Song W,Wang Y.Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap.Nat Commun2018;9:2237 PMCID:PMC5993831

[199]

Tang X,Yin S.PD-L1 knockdown via hybrid micelle promotes paclitaxel induced cancer-immunity cycle for melanoma treatment.Eur J Pharm Sci2019;127:161-74

[200]

Dong X,Zhang X.Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging.ACS Appl Mater Interfaces2018;10:4271-84

[201]

Wang H,Liu X.Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance.Nat Commun2018;9:562 PMCID:PMC5805731

[202]

Hu L,Ma L.The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy.Biomaterials2019;223:119469

[203]

Liu Z,Chen W,Yu F.Light and sound to trigger the pandora’s box against breast cancer: a combination strategy of sonodynamic, photodynamic and photothermal therapies.Biomaterials2020;232:119685

[204]

Kwiatkowski S,Przystupski D.Photodynamic therapy - mechanisms, photosensitizers and combinations.Biomed Pharmacother2018;106:1098-107

[205]

Wei X,Guo X,Zhao J.Light-activated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors.ACS Appl Mater Interfaces2018;10:17672-84

[206]

Caddeo C,Gabriele M.Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol.Int J Pharm2018;538:40-7

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/