Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia

Jamshid Sorouri Khorashad , Sian Rizzo , Alex Tonks

Cancer Drug Resistance ›› 2024, Vol. 7 : 5

PDF
Cancer Drug Resistance ›› 2024, Vol. 7 :5 DOI: 10.20517/cdr.2023.125
review-article

Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia

Author information +
History +
PDF

Abstract

Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.

Keywords

Reactive oxygen species / acute myeloid leukemia / NOX2 / drug resistance / relapse

Cite this article

Download citation ▾
Jamshid Sorouri Khorashad, Sian Rizzo, Alex Tonks. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. Cancer Drug Resistance, 2024, 7: 5 DOI:10.20517/cdr.2023.125

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ribeiro S,Khorashad JS.Genomic abnormalities as biomarkers and therapeutic targets in acute myeloid leukemia.Cancers2021;13:5055 PMCID:PMC8533805

[2]

Ishii H.New therapeutic strategies for adult acute myeloid leukemia.Cancers2022;14:2806 PMCID:PMC9179253

[3]

Büchner T,Berdel WE.6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group.J Clin Oncol2003;21:4496-504

[4]

Bradstock KF,Lowenthal RM.A randomized trial of high-versus conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing high-dose cytarabine.Blood2005;105:481-8

[5]

Hann IM,Goldstone AH.Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council.Blood1997;89:2311-8

[6]

Grimwade D,Oliver F.The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties.Blood1998;92:2322-33

[7]

Goldstone AH,Wheatley K.Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial.Blood2001;98:1302-11

[8]

Milligan DW,Littlewood T,Burnett AK.NCRI Haematological Oncology Clinical Studies GroupFludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AML-HR randomized trial.Blood2006;107:4614-22

[9]

Almeida AM.Acute myeloid leukemia in the older adults.Leuk Res Rep2016;6:1-7 PMCID:PMC4927655

[10]

Hackl H,Wieser R.Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia.J Hematol Oncol2017;10:51 PMCID:PMC5322789

[11]

Yilmaz M,Loghavi S.Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia?.Blood Cancer J2019;9:7 PMCID:PMC6335405

[12]

Zeijlemaker W,Meijer R.CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia.Leukemia2019;33:1102-12

[13]

Bonnet D.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med1997;3:730-7

[14]

Ishikawa F,Saito Y.Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region.Nat Biotechnol2007;25:1315-21

[15]

Corces-Zimmerman MR.Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis.Leukemia2014;28:2276-82 PMCID:PMC4262622

[16]

Chopra M.The cell of origin and the leukemia stem cell in acute myeloid leukemia.Genes Chromosomes Cancer2019;58:850-8

[17]

Taussig DC,Anjos-Afonso F.Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells.Blood2008;112:568-75

[18]

Goardon N,Atzberger A.Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia.Cancer Cell2011;19:138-52

[19]

Valent P,Sadovnik I.Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: perspectives and open issues.Stem Cells Transl Med2020;9:1331-43 PMCID:PMC7581453

[20]

Wang X,Chen JL.Understanding of leukemic stem cells and their clinical implications.Mol Cancer2017;16:2 PMCID:PMC5282926

[21]

Hanekamp D,Schuurhuis GJ.Leukemic stem cells: identification and clinical application.Int J Hematol2017;105:549-57

[22]

Behbehani GK,Bjornson ZB,Medeiros BC.Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy.Cancer Discov2015;5:988-1003 PMCID:PMC4652947

[23]

Laurenti E.From haematopoietic stem cells to complex differentiation landscapes.Nature2018;553:418-26 PMCID:PMC6555401

[24]

Stelmach P.Leukemic stem cells and therapy resistance in acute myeloid leukemia.Haematologica2023;108:353-66 PMCID:PMC9890038

[25]

Shaffer BC,Patel C,Bates SE.Drug resistance: still a daunting challenge to the successful treatment of AML.Drug Resist Updat2012;15:62-9 PMCID:PMC3348380

[26]

Gillet JP,Remacle J.Chemotherapy-induced resistance by ATP-binding cassette transporter genes.Biochim Biophys Acta2007;1775:237-62

[27]

Wang JS,Sun DJ.Genetic modification of hematopoietic progenitor cells for combined resistance to 4-hydroperoxycyclophosphamide, vincristine, and daunorubicin.Acta Pharmacol Sin2001;22:949-55

[28]

Chute JP,Whitesides J.Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells.Proc Natl Acad Sci U S A2006;103:11707-12 PMCID:PMC1544234

[29]

Wang Y,Sinha AU.The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML.Science2010;327:1650-3 PMCID:PMC3084586

[30]

Lainez-González D,Alonso-Domínguez JM.Understanding the hedgehog signaling pathway in acute myeloid leukemia stem cells: a necessary step toward a cure.Biology2021;10:255 PMCID:PMC8063837

[31]

Widden H.The multiple mechanisms of MCL1 in the regulation of cell fate.Commun Biol2021;4:1029 PMCID:PMC8413315

[32]

Matsunaga T,Sato T.Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.Nat Med2003;9:1158-65

[33]

Zhou HS,Andreeff M.Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang.Cancer Biol Med2016;13:248-59 PMCID:PMC4944541

[34]

Konopleva M,Potluri J.Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia.Cancer Discov2016;6:1106-17 PMCID:PMC5436271

[35]

DiNardo CD,Letai A.Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study.Lancet Oncol2018;19:216-28

[36]

Pollyea DA,Jones CL.Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia.Nat Med2018;24:1859-66 PMCID:PMC7001730

[37]

DiNardo CD,Rausch CR.10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial.Lancet Haematol2020;7:e724-36 PMCID:PMC7549397

[38]

Wei AH,Hou JZ.Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study.J Clin Oncol2019;37:1277-84 PMCID:PMC6524989

[39]

DiNardo CD,Pullarkat V.Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N Engl J Med2020;383:617-29

[40]

Bindoli A.Principles in redox signaling: from chemistry to functional significance.Antioxid Redox Signal2013;18:1557-93

[41]

Bienert GP.Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.Biochim Biophys Acta2014;1840:1596-604

[42]

Hole PS,Tonks A.Do reactive oxygen species play a role in myeloid leukemias?.Blood2011;117:5816-26

[43]

Harris IS.The complex interplay between antioxidants and ROS in cancer.Trends Cell Biol2020;30:440-51

[44]

Winterbourn CC.Thiol chemistry and specificity in redox signaling.Free Radic Biol Med2008;45:549-61

[45]

Skonieczna M,Poterala-Hejmo A,Buldak RJ.NADPH oxidases: insights into selected functions and mechanisms of action in cancer and stem cells.Oxid Med Cell Longev2017;2017:9420539 PMCID:PMC5463201

[46]

Brown DI.Nox proteins in signal transduction.Free Radic Biol Med2009;47:1239-53 PMCID:PMC2763943

[47]

Sies H.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.Nat Rev Mol Cell Biol2020;21:363-83

[48]

Spencer JA,Roussakis E.Direct measurement of local oxygen concentration in the bone marrow of live animals.Nature2014;508:269-73 PMCID:PMC3984353

[49]

Testa U,Castelli G.Oxidative stress and hypoxia in normal and leukemic stem cells.Exp Hematol2016;44:540-60

[50]

McDonagh B.Detection of ROS induced proteomic signatures by mass spectrometry.Front Physiol2017;8:470 PMCID:PMC5500628

[51]

Chung HS,Venkatraman V,Van Eyk JE.Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system.Circ Res2013;112:382-92 PMCID:PMC4340704

[52]

Klomsiri C,Poole LB.Cysteine-based redox switches in enzymes.Antioxid Redox Signal2011;14:1065-77 PMCID:PMC3064533

[53]

Marino SM.Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces.J Mol Biol2010;404:902-16 PMCID:PMC3061813

[54]

Jones DP.Radical-free biology of oxidative stress.Am J Physiol Cell Physiol2008;295:C849-68 PMCID:PMC2575825

[55]

Sobotta MC,Stocker S.Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.Nat Chem Biol2015;11:64-70

[56]

Sakai J,Subramanian KK.Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.Immunity2012;37:1037-49 PMCID:PMC3525814

[57]

Zhou FL,Wei YC.Involvement of oxidative stress in the relapse of acute myeloid leukemia.J Biol Chem2010;285:15010-5 PMCID:PMC2865279

[58]

Lee SR,Kwon J,Jeong W.Reversible inactivation of the tumor suppressor PTEN by H2O2.J Biol Chem2002;277:20336-42

[59]

Dagnell M,Pader I.Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling.Proc Natl Acad Sci U S A2013;110:13398-403 PMCID:PMC3746926

[60]

Meng TC,Tonks NK.Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo.Mol Cell2002;9:387-99

[61]

Hainaut P.Redox modulation of p53 conformation and sequence-specific DNA binding in vitro.Cancer Res1993;53:4469-73

[62]

Sun J,Eu JP,Meissner G.Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel.J Biol Chem2003;278:8184-9

[63]

Choi YB,Le DA.Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation.Nat Neurosci2000;3:15-21

[64]

Woo HA,Chang TS.Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.J Biol Chem2005;280:3125-8

[65]

Anastasiou D,Asara JM.Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses.Science2011;334:1278-83 PMCID:PMC3471535

[66]

Noguchi T,Fukutomi H.Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage.J Biol Chem2008;283:7657-65

[67]

Nadeau PJ,Landry J.REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis.Mol Biol Cell2009;20:3628-37 PMCID:PMC2777923

[68]

Dalle-Donne I,Gagliano N,Giustarini D.Molecular mechanisms and potential clinical significance of S-glutathionylation.Antioxid Redox Signal2008;10:445-73

[69]

Kamata H,Maeda S,Hirata H.Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.Cell2005;120:649-61

[70]

Shao L,Pazhanisamy SK,Wang Y.Reactive oxygen species and hematopoietic stem cell senescence.Int J Hematol2011;94:24-32 PMCID:PMC3390185

[71]

Suda T,Semenza GL.Metabolic regulation of hematopoietic stem cells in the hypoxic niche.Cell Stem Cell2011;9:298-310

[72]

Shinohara A,Nakagawa M,Ichikawa M.Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors.Stem Cells2014;32:548-57

[73]

Jayavelu AK,Böhmer FD.NOX-driven ROS formation in cell transformation of FLT3-ITD-positive AML.Exp Hematol2016;44:1113-22

[74]

Zhang Y,Liu D.FoxO family members in cancer.Cancer Biol Ther2011;12:253-9

[75]

Warr MR,Flach J.FOXO3A directs a protective autophagy program in haematopoietic stem cells.Nature2013;494:323-7 PMCID:PMC3579002

[76]

Eijkelenboom A.FOXOs: signalling integrators for homeostasis maintenance.Nat Rev Mol Cell Biol2013;14:83-97

[77]

Klotz LO,Prieto-Arroyo I,Steinbrenner H.Redox regulation of FoxO transcription factors.Redox Biol2015;6:51-72 PMCID:PMC4511623

[78]

Adane B,Khan N.The Hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells.Cell Rep2019;27:238-54.e6 PMCID:PMC6931909

[79]

Roberts AW,Zhen L.Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense.Immunity1999;10:183-96

[80]

Cancelas JA,Prabhakar R,Zheng Y.Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization.Nat Med2005;11:886-91

[81]

Weisser M,Stein S.Hyperinflammation in patients with chronic granulomatous disease leads to impairment of hematopoietic stem cell functions.J Allergy Clin Immunol2016;138:219-28.e9

[82]

Hole PS,Tonks AJ.Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells.Blood2010;115:1238-46

[83]

Tothova Z.FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system.Cell Stem Cell2007;1:140-52

[84]

Zhang J,Murphy AN.Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.Cell Metab2011;13:690-700 PMCID:PMC3119201

[85]

Huang D,Xiao M.Redox metabolism maintains the leukemogenic capacity and drug resistance of AML cells.Proc Natl Acad Sci U S A2023;120:e2210796120 PMCID:PMC10068762

[86]

Wang XW,Huo TI.Molecular pathogenesis of human hepatocellular carcinoma.Toxicology2002;181-2:43-7

[87]

Wallace DC.Mitochondria and cancer.Nat Rev Cancer2012;12:685-98 PMCID:PMC4371788

[88]

Weinberg F.Reactive oxygen species-dependent signaling regulates cancer.Cell Mol Life Sci2009;66:3663-73

[89]

Ichijo H,Irie K.Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.Science1997;275:90-4

[90]

Moon DO,Choi YH,Chang WY.Butein induces G2/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation.Cancer Lett2010;288:204-13

[91]

Piret B,Piette J.The ATM protein is required for sustained activation of NF-kappaB following DNA damage.Oncogene1999;18:2261-71

[92]

Ling YH,Zou Y.Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells.J Biol Chem2003;278:33714-23

[93]

Kuo PL,Hsu YL.Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species/apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells.Cancer Res2007;67:7406-20

[94]

Zhang Y.Reactive oxygen species (ROS), troublemakers between nuclear factor-κB (NF-κB) and c-Jun NH2-terminal kinase (JNK).Cancer Res2004;64:1902-5

[95]

Kim BC,Lee SA.Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway.Biochem Pharmacol2005;70:1398-407

[96]

Glasauer A.Targeting antioxidants for cancer therapy.Biochem Pharmacol2014;92:90-101

[97]

Hayes JD,Tew KD.Oxidative stress in cancer.Cancer Cell2020;38:167-97 PMCID:PMC7439808

[98]

Trujillo M,Manta B.Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation.Arch Biochem Biophys2007;467:95-106

[99]

Lu J.The thioredoxin antioxidant system.Free Radic Biol Med2014;66:75-87

[100]

van der Reest J, Lilla S, Zheng L, Zanivan S, Gottlieb E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress.Nat Commun2018;9:1581 PMCID:PMC5910380

[101]

Sakamoto K,Sugiyama H.Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications.Mol Biol Cell2009;20:1606-17 PMCID:PMC2655256

[102]

Xiao GG,Li N,Nel AE.Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line.J Biol Chem2003;278:50781-90

[103]

Tabe Y.Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment.Cancer Drug Resist2023;6:138-50 PMCID:PMC10099600

[104]

Skrtić M,Jhas B.Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia.Cancer Cell2011;20:674-88 PMCID:PMC3221282

[105]

Hole PS,Munje C.Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.Blood2013;122:3322-30

[106]

Lagadinou ED,Callahan K.BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.Cell Stem Cell2013;12:329-41 PMCID:PMC3595363

[107]

Mattes K,Folkerts H.CD34+ acute myeloid leukemia cells with low levels of reactive oxygen species show increased expression of stemness genes and can be targeted by the BCL2 inhibitor venetoclax.Haematologica2020;105:e399-403 PMCID:PMC7395293

[108]

Pei S,Adane B.AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells.Cell Stem Cell2018;23:86-100.e6 PMCID:PMC6035102

[109]

Robinson AJ,Rastogi N.Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3.Cancer Res2020;80:937-49 PMCID:PMC7611211

[110]

Sillar JR,DeIuliis GN.The role of reactive oxygen species in acute myeloid leukaemia.Int J Mol Sci2019;20:6003 PMCID:PMC6929020

[111]

Stanicka J,Woolley JF.NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells.J Biol Chem2015;290:9348-61 PMCID:PMC4392242

[112]

Reddy MM,Salgia R,Griffin JD.NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases.Leukemia2011;25:281-9 PMCID:PMC4078661

[113]

Godfrey R,Bauer R.Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/PTPRJ.Blood2012;119:4499-511

[114]

Germon ZP,Mannan A.Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies.Sci Signal2023;16:eabp9586

[115]

Gregory MA,Alvarez-Calderon F.ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia.Proc Natl Acad Sci U S A2016;113:E6669-78 PMCID:PMC5086999

[116]

Aydin E,Grauers Wiktorin H,Hellstrand K.NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease.Oncogene2019;38:1534-43 PMCID:PMC6372471

[117]

Ijurko C,García-Calvo C.NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival.Free Radic Biol Med2023;209:18-28

[118]

Döhner H,Grimwade D.Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.Blood2017;129:424-47 PMCID:PMC5291965

[119]

Shlush LI,Heisler L.Tracing the origins of relapse in acute myeloid leukaemia to stem cells.Nature2017;547:104-8

[120]

Bossis G,Kifagi C.The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs.Cell Rep2014;7:1815-23

[121]

Saito Y,Lin A,Nakada D.AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow.Cell Stem Cell2015;17:585-96 PMCID:PMC4597792

[122]

Robinson AJ,Darley RL.Reactive oxygen species rewires metabolic activity in acute myeloid leukemia.Front Oncol2021;11:632623 PMCID:PMC7993200

[123]

Stuani L.Help from outside: cysteine to survive in AML.Blood2019;134:336-8

[124]

Jones CL,D’Alessandro A.Inhibition of amino acid metabolism selectively targets human leukemia stem cells.Cancer Cell2018;34:724-40.e4 PMCID:PMC6280965

[125]

Stevens BM,Pollyea DA.Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.Nat Cancer2020;1:1176-87 PMCID:PMC8054994

[126]

Bosc C,Bousard A.Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia.Nat Cancer2021;2:1204-23

[127]

Larrue C,Lin S.Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia.Leukemia2023;37:765-75 PMCID:PMC10079528

[128]

Farge T,de Toni F.Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism.Cancer Discov2017;7:716-35 PMCID:PMC5501738

[129]

Ma J,Yu D.SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation.Br J Haematol2019;187:49-64 PMCID:PMC6790595

[130]

O’Brien C,Berman JM.Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid beta-oxidation and inducing lipotoxicity.Haematologica2023;108:2343-57 PMCID:PMC10483359

[131]

Sasca D,Szybinski J.SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia.Blood2014;124:121-33

[132]

Li L,Ho Y.SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells.Cell Stem Cell2014;15:431-46 PMCID:PMC4305398

[133]

Levavasseur F,Zubaidan T.FOXP1 regulates oxidative stress, SIRT1 expression, and resistance to chemotherapies in acute myeloid leukemia cells.Blood Adv2023;7:3265-75 PMCID:PMC10336262

[134]

Jiang P,Wang X.p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase.Nat Cell Biol2011;13:310-6 PMCID:PMC3110666

[135]

Du W,Mancuso A.TAp73 enhances the pentose phosphate pathway and supports cell proliferation.Nat Cell Biol2013;15:991-1000 PMCID:PMC3733810

[136]

Xu SN,Li X.SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.Sci Rep2016;6:32734

[137]

Yan D,Pomicter AD.Sirt5 is a druggable metabolic vulnerability in acute myeloid leukemia.Blood Cancer Discov2021;2:266-87 PMCID:PMC8133360

[138]

Paolillo R,Gâtel P.The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias.Haematologica2022;107:2562-75 PMCID:PMC9614539

[139]

Jones CL,Pollyea DA.Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells.Cell Stem Cell2020;27:748-64.e4 PMCID:PMC7655603

[140]

Marlein CR,Piddock RE.NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.Blood2017;130:1649-60

[141]

Aurelius J,Akhiani AA.Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis.Blood2012;119:5832-7 PMCID:PMC3418695

[142]

Sallmyr A,Datta K.Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML.Blood2008;111:3173-82

[143]

Rassool FV,Omidvar N.Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?.Cancer Res2007;67:8762-71

[144]

Vilaplana-Lopera N,Almaghrabi R.Crosstalk between AML and stromal cells triggers acetate secretion through the metabolic rewiring of stromal cells.Elife2022;11:e75908 PMCID:PMC9477493

[145]

Laleu B,Orchard M.First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis.J Med Chem2010;53:7715-30

[146]

Aoyama T,Watanabe S.Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent.Hepatology2012;56:2316-27 PMCID:PMC3493679

[147]

Riganti C,Bosia A.The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress.Toxicol Appl Pharmacol2006;212:179-87

[148]

Smith RAJ,Gane AM.Delivery of bioactive molecules to mitochondria in vivo.Proc Natl Acad Sci U S A2003;100:5407-12 PMCID:PMC154358

[149]

Zhao K,Wu D.Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury.J Biol Chem2004;279:34682-90

[150]

Dikalova AE,Budzyn K.Therapeutic targeting of mitochondrial superoxide in hypertension.Circ Res2010;107:106-16 PMCID:PMC2901409

[151]

Leach JK,Schmidt-Ullrich RK.Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation.J Biol Chem2002;277:15400-6

[152]

Spasojević I,Noel TJ.Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria.Free Radic Biol Med2007;42:1193-200 PMCID:PMC1931511

[153]

Haraldsen JD,Botting CH.Identification of conoidin a as a covalent inhibitor of peroxiredoxin II.Org Biomol Chem2009;7:3040-8 PMCID:PMC3043594

[154]

Muchowicz A,Chlebowska J.Adenanthin targets proteins involved in the regulation of disulphide bonds.Biochem Pharmacol2014;89:210-6

[155]

D’Amato A,Iacopetta D.Complexes of ruthenium(II) as promising dual-active agents against cancer and viral infections.Pharmaceuticals2023;16:1729

[156]

Karami A,Kooshki L.Polydatin: pharmacological mechanisms, therapeutic targets, biological activities, and health benefits.Molecules2022;27:6474 PMCID:PMC9572446

[157]

Boots AW,Bast A.Health effects of quercetin: from antioxidant to nutraceutical.Eur J Pharmacol2008;585:325-37

[158]

Srinivasan M,Menon VP.Ferulic acid: therapeutic potential through its antioxidant property.J Clin Biochem Nutr2007;40:92-100 PMCID:PMC2127228

[159]

Bochum S,Martens UM.Olaparib.Recent Results Cancer Res2018;211:217-33

[160]

Zeng Y, Arisa O, Peer CJ, Figg WD, Fojo A. PARP inhibitors: a review of the pharmacology, pharmacokinetics, and pharmacogenetics. Semin Oncol 2023.

[161]

Li N.Is NF-kappaB the sensor of oxidative stress?.FASEB J1999;13:1137-43

[162]

Gloire G,Piette J.NF-κB activation by reactive oxygen species: fifteen years later.Biochem Pharmacol2006;72:1493-505

[163]

Liu SF.NF-κB activation as a pathological mechanism of septic shock and inflammation.Am J Physiol Lung Cell Mol Physiol2006;290:L622-45

[164]

Schreck R,Baeuerle PA.Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.MBO J1991;10:2247-58 PMCID:PMC452914

[165]

Biswas SK,Jimenez LA,Rahman I.Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity.Antioxid Redox Signal2005;7:32-41

[166]

Fahey JW.Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes.Food Chem Toxicol1999;37:973-9

[167]

Peng X.ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage.Ther Deliv2012;3:823-33 PMCID:PMC3566582

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/