PDF
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Keywords
OXPHOS
/
DHODH
/
leukemia stem cells
/
mesenchymal stromal cells
/
IDH
Cite this article
Download citation ▾
Priyanka Sharma, Gautam Borthakur.
Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia.
Cancer Drug Resistance, 2023, 6(3): 567-89 DOI:10.20517/cdr.2023.12
| [1] |
Zhang N,Wang Q.Global burden of hematologic malignancies and evolution patterns over the past 30 years.Blood Cancer J2023;13:82 PMCID:PMC10188596
|
| [2] |
de Kouchkovsky I.'Acute myeloid leukemia: a comprehensive review and 2016 update'.Blood Cancer J2016;6:e441 PMCID:PMC5030376
|
| [3] |
Cantor JR.Cancer cell metabolism: one hallmark, many faces.Cancer Discov2012;2:881-98 PMCID:PMC3491070
|
| [4] |
Papa L,Hoffman R.Mitochondrial role in stemness and differentiation of hematopoietic stem cells.Stem Cells Int2019;2019:4067162 PMCID:PMC6381553
|
| [5] |
Ito K,Arai F.Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells.Nat Med2006;12:446-51
|
| [6] |
Katajisto P,Chaffer CL.Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness.Science2015;348:340-3 PMCID:PMC4405120
|
| [7] |
Khacho M,Svoboda DS.Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program.Cell Stem Cell2016;19:232-47
|
| [8] |
Lagadinou ED,Callahan K.BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.Cell Stem Cell2013;12:329-41 PMCID:PMC3595363
|
| [9] |
Sriskanthadevan S,Chung TE.AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress.Blood2015;125:2120-30 PMCID:PMC4375109
|
| [10] |
Tan AS,Dong LF.Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.Cell Metab2015;21:81-94
|
| [11] |
Dong LF,Bajzikova M.Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells.Elife2017;6:e22187 PMCID:PMC5367896
|
| [12] |
Moschoi R,Nebout M.Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy.Blood2016;128:253-64
|
| [13] |
Strakova A,Baez-Ortega A.Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer.Nat Commun2020;11:3059 PMCID:PMC7297733
|
| [14] |
Birsoy K,Chen WW,Abu-Remaileh M.An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis.Cell2015;162:540-51 PMCID:PMC4522279
|
| [15] |
Sullivan LB,Hosios AM,Freinkman E.Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells.Cell2015;162:552-63 PMCID:PMC4522278
|
| [16] |
Molina JR,Protopopova M.An inhibitor of oxidative phosphorylation exploits cancer vulnerability.Nat Med2018;24:1036-46
|
| [17] |
Janku F,Moon YW.First-in-human study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors.Invest New Drugs2022;40:1001-10 PMCID:PMC9395488
|
| [18] |
Ellinghaus P,Unterschemmann K.BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I.Cancer Med2013;2:611-24 PMCID:PMC3892793
|
| [19] |
Bendell JC,Infante JR.Phase 1, open-label, dose escalation, safety, and pharmacokinetics study of ME-344 as a single agent in patients with refractory solid tumors.Cancer2015;121:1056-63 PMCID:PMC4406150
|
| [20] |
Diamond JR,Forster MD.Phase Ib study of the mitochondrial inhibitor ME-344 plus topotecan in patients with previously treated, locally advanced or metastatic small cell lung, ovarian and cervical cancers.Invest New Drugs2017;35:627-33 PMCID:PMC7466821
|
| [21] |
Ishizawa J,Davis RE.Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality.Cancer Cell2019;35:721-37.e9 PMCID:PMC6620028
|
| [22] |
Baccelli I,Lehnertz B.Mubritinib targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia.Cancer Cell2019;36:84-99.e8
|
| [23] |
Huang Z,Liu W.Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation.Chin J Nat Med2023;21:136-45
|
| [24] |
Pardee TS,Pladna KM.A phase I study of CPI-613 in combination with high-dose cytarabine and mitoxantrone for relapsed or refractory acute myeloid leukemia.Clin Cancer Res2018;24:2060-73 PMCID:PMC5932089
|
| [25] |
Stuart SD,Gupta S.A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process.Cancer Metab2014;2:4 PMCID:PMC4108059
|
| [26] |
You R,Chen P.Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells.Cancer Lett2022;532:215582
|
| [27] |
Yuan F,Xiao F,Cao S.Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C.Life Sci2020;243:117276
|
| [28] |
Wang F,Zeng J.Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy.Leuk Res2015;39:1421-7
|
| [29] |
Velez J,Lee JT.Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport.Oncotarget2016;7:51435-49 PMCID:PMC5239486
|
| [30] |
Zhou FJ,Kuang W.Metformin exerts a synergistic effect with venetoclax by downregulating Mcl-1 protein in acute myeloid leukemia.J Cancer2021;12:6727-39 PMCID:PMC8518002
|
| [31] |
Valiulienė G,Skliutė G,Navakauskienė R.Pharmaceutical drug metformin and MCL1 inhibitor S63845 exhibit anticancer activity in myeloid leukemia cells via redox remodeling.Molecules2021;26:2303 PMCID:PMC8071510
|
| [32] |
Rha SY,Shin YG.Phase I study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors.J Clin Oncol2020;38:3590
|
| [33] |
Farge T,de Toni F.Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism.Cancer Discov2017;7:716-35 PMCID:PMC5501738
|
| [34] |
Ma J,Yu D.SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation.Br J Haematol2019;187:49-64 PMCID:PMC6790595
|
| [35] |
Zhang Y,Wei W.Dysregulation of SIRT3 SUMOylation confers AML chemoresistance via controlling HES1-dependent fatty acid oxidation.Int J Mol Sci2022;23:8282 PMCID:PMC9368767
|
| [36] |
Aroua N,Ghisi M.Extracellular ATP and CD39 activate cAMP-mediated mitochondrial stress response to promote cytarabine resistance in acute myeloid leukemia.Cancer Discov2020;10:1544-65
|
| [37] |
Marcucci G,Wu YZ.IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.J Clin Oncol2010;28:2348-55 PMCID:PMC2881719
|
| [38] |
DiNardo CD,Agresta S.Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML.Am J Hematol2015;90:732-6 PMCID:PMC4612499
|
| [39] |
Ward PS,Wise DR.The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate.Cancer Cell2010;17:225-34 PMCID:PMC2849316
|
| [40] |
Xu W,Liu Y.Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.Cancer Cell2011;19:17-30 PMCID:PMC3229304
|
| [41] |
Chen Q,Bian C,Yu X.TET2 promotes histone O-GlcNAcylation during gene transcription.Nature2013;493:561-4 PMCID:PMC3684361
|
| [42] |
Montalban-Bravo G.The role of IDH mutations in acute myeloid leukemia.Future Oncol2018;14:979-93
|
| [43] |
Wang F,DeLaBarre B.Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.Science2013;340:622-6
|
| [44] |
Wallace DC.Mitochondria and cancer.Nat Rev Cancer2012;12:685-98 PMCID:PMC4371788
|
| [45] |
Norsworthy KJ,Hsu V.FDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation.Clin Cancer Res2019;25:3205-9
|
| [46] |
Chaturvedi A,Pusch S.Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo.Leukemia2017;31:2020-8 PMCID:PMC5629366
|
| [47] |
Chaturvedi A,Gabdoulline R.Synergistic activity of IDH1 inhibitor BAY1436032 with azacitidine in IDH1 mutant acute myeloid leukemia.Haematologica2021;106:565-73 PMCID:PMC7849562
|
| [48] |
Shih AH,Shank K.Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia.Cancer Discov2017;7:494-505 PMCID:PMC5413413
|
| [49] |
Intlekofer AM,Wang B.Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations.Nature2018;559:125-9 PMCID:PMC6121718
|
| [50] |
Chan SM,Corces-Zimmerman MR.Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia.Nat Med2015;21:178-84 PMCID:PMC4406275
|
| [51] |
Bewersdorf JP,Derkach A.Venetoclax-based salvage therapy in patients with relapsed/refractory acute myeloid leukemia previously treated with FLT3 or IDH1/2 inhibitors.Leuk Lymphoma2023;64:188-96 PMCID:PMC9905301
|
| [52] |
DiNardo CD,Frattini MG.A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome.J Cancer Res Clin Oncol2023;149:1145-58
|
| [53] |
Sule A,Sundaram RK,Vasquez JC.Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors.NAR Cancer2021;3:zcab018 PMCID:PMC8127964
|
| [54] |
Sulkowski PL,Robinson ND.2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity.Sci Transl Med2017;9:eaal2463 PMCID:PMC5435119
|
| [55] |
Lu Y,Liu Y.Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair.Cancer Res2017;77:1709-18 PMCID:PMC5380481
|
| [56] |
Abou-Alfa GK,Javle MM.Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study.Lancet Oncol2020;21:796-807 PMCID:PMC7523268
|
| [57] |
Mugoni V,Cheloni G.Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy.Cell Res2019;29:446-59 PMCID:PMC6796925
|
| [58] |
Molenaar RJ,Nagata Y.IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors.Clin Cancer Res2018;24:1705-15 PMCID:PMC5884732
|
| [59] |
Capaldi RA.Structure and function of cytochrome c oxidase.Annu Rev Biochem1990;59:569-96
|
| [60] |
Konopleva M,Potluri J.Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia.Cancer Discov2016;6:1106-17 PMCID:PMC5436271
|
| [61] |
DiNardo CD,Pullarkat V.Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N Engl J Med2020;383:617-29
|
| [62] |
DiNardo CD,Benton C.Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies.Am J Hematol2018;93:401-7
|
| [63] |
Wang F,DiNardo CD.Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia.Nat Commun2021;12:2607 PMCID:PMC8110775
|
| [64] |
Tateishi K,Iafrate AJ.Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion.Cancer Cell2015;28:773-84 PMCID:PMC4684594
|
| [65] |
Samudio I.Asparaginase unveils glutamine-addicted AML.Blood2013;122:3398-400
|
| [66] |
Jacque N,Larrue C.Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition.Blood2015;126:1346-56 PMCID:PMC4608389
|
| [67] |
Emadi A,Tsukamoto T,Minden MD.Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations.Exp Hematol2014;42:247-51
|
| [68] |
Altman BJ,Dang CV.From Krebs to clinic: glutamine metabolism to cancer therapy.Nat Rev Cancer2016;16:619-34
|
| [69] |
Gregory MA,Park HJ.Targeting glutamine metabolism and redox state for leukemia therapy.Clin Cancer Res2019;25:4079-90 PMCID:PMC6642698
|
| [70] |
Nicklin P,Zhang B.Bidirectional transport of amino acids regulates mTOR and autophagy.Cell2009;136:521-34 PMCID:PMC3733119
|
| [71] |
Fuchs BC.Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime?.Semin Cancer Biol2005;15:254-66
|
| [72] |
Willems L,Jacquel A.Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia.Blood2013;122:3521-32 PMCID:PMC3829119
|
| [73] |
Gingras AC,Gygi SP.Hierarchical phosphorylation of the translation inhibitor 4E-BP1.Genes Dev2001;15:2852-64 PMCID:PMC312813
|
| [74] |
Beckett A.What makes a good new therapeutic L-asparaginase?.World J Microbiol Biotechnol2019;35:152
|
| [75] |
Emadi A,Bollino D.Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia.Leukemia2021;35:1907-24
|
| [76] |
Gallipoli P,Tzelepis K.Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition.Blood2018;131:1639-53 PMCID:PMC6061932
|
| [77] |
Delpuech O,East P.Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression.Mol Cell Biol2007;27:4917-30 PMCID:PMC1951505
|
| [78] |
Scheijen B,Kang H.FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins.Oncogene2004;23:3338-49
|
| [79] |
Jones CL,D’Alessandro A.Inhibition of amino acid metabolism selectively targets human leukemia stem cells.Cancer Cell2018;34:724-740.e4 PMCID:PMC6280965
|
| [80] |
Jones CL,D’Alessandro A.Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II.Blood2019;134:389-94 PMCID:PMC6659257
|
| [81] |
Chen Q,Xu A.Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria.PLoS One2015;10:e0118834 PMCID:PMC4354902
|
| [82] |
Mussai F,Higginbotham-Jones J.Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target.Blood2015;125:2386-96 PMCID:PMC4416943
|
| [83] |
Miraki-Moud F,Ariza-McNaughton L.Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.Blood2015;125:4060-8
|
| [84] |
Zhang W,Liu J.Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia.Nat Cell Biol2012;14:276-86 PMCID:PMC3290742
|
| [85] |
Taya Y,Wilkinson AC.Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation.Science2016;354:1152-5
|
| [86] |
Wilkinson AC,Nakauchi H.Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity.Exp Hematol2018;63:12-6.e1 PMCID:PMC6052250
|
| [87] |
Kreitz J,Seibert M.Metabolic plasticity of acute myeloid leukemia.Cells2019;8:805 PMCID:PMC6721808
|
| [88] |
Raffel S,Kneisel N.BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.Nature2017;551:384-8
|
| [89] |
Tönjes M,Park YJ.BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1.Nat Med2013;19:901-8 PMCID:PMC4916649
|
| [90] |
Sainas S,Lupino E.Targeting myeloid differentiation using potent 2-hydroxypyrazolo[1,5- a]pyridine scaffold-based human dihydroorotate dehydrogenase inhibitors.J Med Chem2018;61:6034-55
|
| [91] |
Sykes DB,Mercier FE.Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia.Cell2016;167:171-86.e15 PMCID:PMC7360335
|
| [92] |
Wu D,Chen W.Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells.Haematologica2018;103:1472-83 PMCID:PMC6119157
|
| [93] |
Christian S,Evans L.The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies.Leukemia2019;33:2403-15
|
| [94] |
Mao C,Zhang Y.DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer.Nature2021;593:586-90 PMCID:PMC8895686
|
| [95] |
Noe DA,Shen HS.Phase I and pharmacokinetic study of brequinar sodium (NSC 368390).Cancer Res1990;50:4595-9
|
| [96] |
Martínez-Reyes I,Kong H.Mitochondrial ubiquinol oxidation is necessary for tumour growth.Nature2020;585:288-92 PMCID:PMC7486261
|
| [97] |
Adam-Vizi V.Bioenergetics and the formation of mitochondrial reactive oxygen species.Trends Pharmacol Sci2006;27:639-45
|
| [98] |
Murphy MP.How mitochondria produce reactive oxygen species.Biochem J2009;417:1-13 PMCID:PMC2605959
|
| [99] |
Rohlena J,Ralph SJ.Anticancer drugs targeting the mitochondrial electron transport chain.Antioxid Redox Sign2011;15:2951-74
|
| [100] |
Bajzikova M,Coelho AR.Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells.Cell Metab2019;29:399-416.e10 PMCID:PMC7484595
|
| [101] |
Jones CL,Pollyea DA.Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells.Cell Stem Cell2020;27:748-64.e4 PMCID:PMC7655603
|
| [102] |
Ito K,Weiss D.A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.Nat Med2012;18:1350-8 PMCID:PMC3566224
|
| [103] |
Vriens K,Parik S.Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity.Nature2019;566:403-6 PMCID:PMC6390935
|
| [104] |
Pan R,Mu H.Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy.Cancer Cell2017;32:748-60.e6 PMCID:PMC5730338
|
| [105] |
Escudero S,Lee S.Dynamic regulation of long-chain fatty acid oxidation by a noncanonical interaction between the MCL-1 BH3 helix and VLCAD.Mol Cell2018;69:729-43.e7 PMCID:PMC5916823
|
| [106] |
Perciavalle RM,Koss B.Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration.Nat Cell Biol2012;14:575-83
|
| [107] |
Danial NN,Zhang CY.Dual role of proapoptotic BAD in insulin secretion and beta cell survival.Nat Med2008;14:144-53 PMCID:PMC3918232
|
| [108] |
Ponnusamy S,Senkal CE.Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance.Future Oncol2010;6:1603-24 PMCID:PMC3071292
|
| [109] |
Kao LP,Davis TS.Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells.J Lipid Res2019;60:1590-602 PMCID:PMC6718434
|
| [110] |
Dany M,Nganga R.Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML.Blood2016;128:1944-58 PMCID:PMC5064718
|
| [111] |
Li HY,Willman CL,Banker DE.Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses.Blood2003;101:3628-34
|
| [112] |
Karakitsou E,Contreras Mostazo MG.Genome-scale integration of transcriptome and metabolome unveils squalene synthase and dihydrofolate reductase as targets against AML cells resistant to chemotherapy.Comput Struct Biotechnol J2021;19:4059-66 PMCID:PMC8326745
|
| [113] |
Snaebjornsson MT,Schulze A.Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer.Cell Metab2020;31:62-76
|
| [114] |
Humbert M,Mosimann S.Reducing FASN expression sensitizes acute myeloid leukemia cells to differentiation therapy.Cell Death Differ2021;28:2465-81 PMCID:PMC8329134
|
| [115] |
Park SH,Knippers JD,Rubink DS.Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle.J Appl Physiol2002;92:2475-82
|
| [116] |
Ito H,Kato JY.Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development.J Clin Invest2021;131:e141529 PMCID:PMC8203453
|
| [117] |
Yoon H,Zaganjor E.PHD3 loss promotes exercise capacity and fat oxidation in skeletal muscle.Cell Metab2020;32:215-28.e7 PMCID:PMC8065255
|
| [118] |
German NJ,Yusuf RZ.PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2.Mol Cell2016;63:1006-20 PMCID:PMC5040345
|
| [119] |
Shedding light on fat dependence in AML.Cancer Discov2016;6:OF8
|
| [120] |
Stevens BM,Pollyea DA.Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.Nat Cancer2020;1:1176-87 PMCID:PMC8054994
|
| [121] |
Yao CH,Wang R,Gross RW.Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation.PLoS Biol2018;16:e2003782 PMCID:PMC5892939
|
| [122] |
Jones CL,Culp-hill R.Inhibition of fatty acid metabolism re-sensitizes resistant leukemia stem cells to venetoclax with azacitidine.Blood2019;134:1272
|
| [123] |
Samudio I,Fiegl M.Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction.J Clin Invest2010;120:142-56 PMCID:PMC2799198
|
| [124] |
Salunkhe S,Ghorai A.Metabolic rewiring in drug resistant cells exhibit higher OXPHOS and fatty acids as preferred major source to cellular energetics.Biochim Biophys Acta Bioenerg2020;1861:148300
|
| [125] |
Abdul-Aziz AM,Mehta TK.MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia.Cancer Res2017;77:303-11
|
| [126] |
Marlein CR,Piddock RE.NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.Blood2017;130:1649-60
|
| [127] |
Hou D,You R.Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis.Ann Transl Med2020;8:1346 PMCID:PMC7723653
|
| [128] |
Méndez-Ferrer S,Ferraro F.Mesenchymal and haematopoietic stem cells form a unique bone marrow niche.Nature2010;466:829-34 PMCID:PMC3146551
|
| [129] |
Forte D,Sánchez-Aguilera A.Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy.Cell Metab2020;32:829-43.e9 PMCID:PMC7658808
|
| [130] |
Stuani L.Microenvironmental aspartate preserves leukemic cells from therapy-induced metabolic collapse.Cell Metab2020;32:321-3
|
| [131] |
van Gastel N,Sharda A.Induction of a timed metabolic collapse to overcome cancer chemoresistance.Cell Metab2020;32:391-403.e6 PMCID:PMC8397232
|
| [132] |
Ye H,Khan N.Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche.Cell Stem Cell2016;19:23-37 PMCID:PMC4938766
|
| [133] |
Javidi-Sharifi N,English I.FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells.Elife2019;8:e40033 PMCID:PMC6363389
|
| [134] |
Huang D,Hao X.ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression.J Clin Invest2021;131:e138986 PMCID:PMC7773400
|
| [135] |
Powderly J,Woodard P.Abstract CT209: A first-in-human phase 1 trial of IO-108, an antagonist antibody targeting LILRB2 (ILT4), as monotherapy and in combination with pembrolizumab in adult patients with advanced relapsed or refractory solid tumors (NCT05054348).Cancer Res2022;82:CT209
|
| [136] |
Anami Y,Gui X.LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia.Mol Cancer Ther2020;19:2330-9 PMCID:PMC7921214
|
| [137] |
Dinardo CD,Konopleva M.A first-in-human (FIH) phase 1 study of the anti-LILRB4 antibody IO-202 in relapsed/refractory (R/R) myelomonocytic and monocytic acute myeloid leukemia (AML) and R/R chronic myelomonocytic leukemia (CMML).Blood2020;136:19-20
|
| [138] |
Hong CS,Boyiadzis M.Increased small extracellular vesicle secretion after chemotherapy via upregulation of cholesterol metabolism in acute myeloid leukaemia.J Extracell Vesicles2020;9:1800979 PMCID:PMC7480590
|
| [139] |
Wang B,Hou D.Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling.J Cell Physiol2019;234:10602-14
|
| [140] |
Kumar B,Weng L.Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion.Leukemia2018;32:575-87 PMCID:PMC5843902
|
| [141] |
Peng M,Jing Y.Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia.J Extracell Vesicles2021;10:e12168 PMCID:PMC8607980
|
| [142] |
Hong CS,Shan X,Whiteside TL.Human acute myeloid leukemia blast-derived exosomes in patient-derived xenograft mice mediate immune suppression.Exp Hematol2019;76:60-6.e2
|
| [143] |
Abdelhamed S,Doron B.Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche.EMBO Rep2019;20:e47546 PMCID:PMC6607014
|
| [144] |
Divakaruni AS.A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements.Nat Metab2022;4:978-94 PMCID:PMC9618452
|
| [145] |
Pfleger J.Measurements of mitochondrial respiration in intact cells, permeabilized cells, and isolated tissue mitochondria using the seahorse XF analyzer.Methods Mol Biol2022;2497:185-206
|
| [146] |
Leung DTH.Measurement of oxidative stress: mitochondrial function using the seahorse system.Methods Mol Biol2018;1710:285-93
|
| [147] |
Tirichen H,Xu W,Li R.Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress.Front Physiol2021;12:627837 PMCID:PMC8103168
|
| [148] |
Puleston D.Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry.Cold Spring Harb Protoc2015;2015:pdb.prot086298
|
| [149] |
Wojtala A,Malinska D,Duszynski J.Chapter thirteen - methods to monitor ROS production by fluorescence microscopy and fluorometry.Methods Enzymol2014;542:243-62
|
| [150] |
Ward MW.Quantitative analysis of membrane potentials.Methods Mol Biol2010;591:335-51
|
| [151] |
Chazotte B.Labeling mitochondria with TMRM or TMRE.Cold Spring Harb Protoc2011;2011:895-7
|
| [152] |
Nicholson JK,Holmes E.'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.Xenobiotica1999;29:1181-9
|
| [153] |
Sauer U.Metabolic networks in motion: 13C-based flux analysis.Mol Syst Biol2006;2:62 PMCID:PMC1682028
|
| [154] |
Umpleby AM.1 Measurement of the turnover of substrates of carbohydrate and protein metabolism using radioactive isotopes.Baillieres Clin Endocrinol Metab1987;1:773-96
|
| [155] |
Klapa MI,Stephanopoulos G.Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry.Eur J Biochem2003;270:3525-42
|
| [156] |
Guijas C,Warth B,Siuzdak G.Metabolomics activity screening for identifying metabolites that modulate phenotype.Nat Biotechnol2018;36:316-20 PMCID:PMC5937131
|
| [157] |
Kantarjian H,DiNardo C.Acute myeloid leukemia: current progress and future directions.Blood Cancer J2021;11:41 PMCID:PMC7900255
|