PDF
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Keywords
Autophagy
/
multiple myeloma
/
unfolded protein response
/
bone marrow microenvironment
/
drug resistance
/
hypoxia
/
DNA repair and transcriptional regulation
/
apoptosis
Cite this article
Download citation ▾
Gül Kozalak, Ali Koşar.
Autophagy-related mechanisms for treatment of multiple myeloma.
Cancer Drug Resistance, 2023, 6(4): 838-57 DOI:10.20517/cdr.2023.108
| [1] |
Kozalak G,Toyran E.Review on Bortezomib resistance in multiple myeloma and potential role of emerging technologies.Pharmaceuticals2023;16:111 PMCID:PMC9864669
|
| [2] |
Rajkumar SV.Multiple myeloma: 2020 update on diagnosis, risk-stratification and management.Am J Hematol2020;95:548-67
|
| [3] |
Yang T,Kumar SK,Dai Y.Decoding DNA methylation in epigenetics of multiple myeloma.Blood Rev2022;51:100872
|
| [4] |
Gkoliou G,Karakatsoulis G.Differences in the immunoglobulin gene repertoires of IgG versus IgA multiple myeloma allude to distinct immunopathogenetic trajectories.Front Oncol2023;13:1123029 PMCID:PMC9945080
|
| [5] |
Ho M,Hanley C.Exploiting autophagy in multiple myeloma.J Cancer Metastasis Treat2019;5:70
|
| [6] |
Mateos MV,Bazarbachi A.Insights on multiple myeloma treatment strategies.Hemasphere2019;3:e163 PMCID:PMC6745941
|
| [7] |
Pinto V,Caires HR,Guimarães JE.Multiple myeloma: available therapies and causes of drug resistance.Cancers2020;12:407 PMCID:PMC7072128
|
| [8] |
Galluzzi L,Aaronson SA.Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ2018;25:486-541 PMCID:PMC5864239
|
| [9] |
Yan G,Efferth T.Multiple cell death modalities and their key features (Review).World Acad Sci J2020;2:39-48
|
| [10] |
Green DR.Cell death signaling.Cold Spring Harb Perspect Biol2015;7:a006080 PMCID:PMC4665079
|
| [11] |
Bertheloot D,Franklin BS.Necroptosis, pyroptosis and apoptosis: an intricate game of cell death.Cell Mol Immunol2021;18:1106-21 PMCID:PMC8008022
|
| [12] |
Newton K,Dugger DL.Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis.Nature2019;574:428-31
|
| [13] |
Degenhardt K,Beaudoin B.Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis.Cancer Cell2006;10:51-64 PMCID:PMC2857533
|
| [14] |
Yun Z,Hao Y.Targeting autophagy in multiple myeloma.Leuk Res2017;59:97-104
|
| [15] |
Carroll RG.Autophagy in multiple myeloma: what makes you stronger can also kill you.Cancer Cell2013;23:425-6
|
| [16] |
Bashiri H.Autophagy: a potential therapeutic target to tackle drug resistance in multiple myeloma.Int J Mol Sci2023;24:6019 PMCID:PMC10094562
|
| [17] |
Aquila S,Caputo A,Pezzi V.The tumor suppressor PTEN as molecular switch node regulating cell metabolism and autophagy: implications in immune system and tumor microenvironment.Cells2020;9:1725 PMCID:PMC7408239
|
| [18] |
Al-Odat OS,Schmalbach NK.Autophagy and apoptosis: current challenges of treatment and drug resistance in multiple myeloma.Int J Mol Sci2022;24:644 PMCID:PMC9820338
|
| [19] |
Glick D,Macleod KF.Autophagy: cellular and molecular mechanisms.J Pathol2010;221:3-12 PMCID:PMC2990190
|
| [20] |
Song Y,Liang C.UVRAG in autophagy, inflammation, and cancer.Autophagy2020;16:387-8 PMCID:PMC6984451
|
| [21] |
Aman Y,Hansen M.Autophagy in healthy aging and disease.Nat Aging2021;1:634-50 PMCID:PMC8659158
|
| [22] |
Jaganathan S,Vallabhapurapu S,Driscoll JJ.Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells.Oncotarget2014;5:12358-70 PMCID:PMC4323002
|
| [23] |
Nikesitch N,Ling S.Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance.Clin Transl Immunology2018;7:e1007 PMCID:PMC5822402
|
| [24] |
Harmon KA,Lancaster HD.Structural and ultrastructural analysis of the multiple myeloma cell niche and a patient-specific model of plasma cell dysfunction.Microsc Microanal2022;28:254-64
|
| [25] |
Jung G,Lee H.Autophagic markers BECLIN 1 and LC3 are associated with prognosis of multiple myeloma.Acta Haematol2015;134:17-24
|
| [26] |
Puglisi F,Giallongo C.Plasticity of high-density neutrophils in multiple myeloma is associated with increased autophagy via STAT3.Int J Mol Sci2019;20:3548 PMCID:PMC6678548
|
| [27] |
Clavero E,Macauda A.Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization.Int J Mol Sci2023;24:8500 PMCID:PMC10218542
|
| [28] |
Mayor T.Navigating the ERAD interaction network.Nat Cell Biol2011;14:46-7
|
| [29] |
Kumar AV,Lapierre LR.Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging.Front Cell Dev Biol2022;10:793328 PMCID:PMC8883344
|
| [30] |
Milan E,Resnati M.A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells.Autophagy2015;11:1161-78 PMCID:PMC4590585
|
| [31] |
Auner HW.Recent advances and future directions in targeting the secretory apparatus in multiple myeloma.Br J Haematol2015;168:14-25
|
| [32] |
Conway KL,Khor B.ATG5 regulates plasma cell differentiation.Autophagy2013;9:528-37 PMCID:PMC3627668
|
| [33] |
Pengo N,Oliva L.Plasma cells require autophagy for sustainable immunoglobulin production.Nat Immunol2013;14:298-305
|
| [34] |
Obeng EA,Gutman DM,Lee KP.Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells.Blood2006;107:4907-16 PMCID:PMC1895817
|
| [35] |
Borjan B,Steiner N,Wolf D.Spliced XBP1 levels determine sensitivity of multiple myeloma cells to proteasome inhibitor Bortezomib independent of the unfolded protein response mediator GRP78.Front Oncol2019;9:1530 PMCID:PMC6987373
|
| [36] |
Adams CJ,Larburu N,Ali MMU.Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1.Front Mol Biosci2019;6:11 PMCID:PMC6423427
|
| [37] |
Cairrão F,Le Thomas A,Ashkenazi A.Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay.Nat Commun2022;13:1587 PMCID:PMC8948244
|
| [38] |
Zheng W,Yin D,Liu M.ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling.Cell Commun Signal2019;17:42 PMCID:PMC6503447
|
| [39] |
Park SM,So JS.Roles of XBP1s in transcriptional regulation of target genes.Biomedicines2021;9:791 PMCID:PMC8301375
|
| [40] |
Harnoss JM,Shemorry A.Disruption of IRE1α through its kinase domain attenuates multiple myeloma.Proc Natl Acad Sci U S A2019;116:16420-9 PMCID:PMC6697881
|
| [41] |
Mimura N,Gorgun G.Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma.Blood2012;119:5772-81 PMCID:PMC3382937
|
| [42] |
Dang J,Ma X.ORMDL3 facilitates the survival of splenic B cells via an ATF6α-endoplasmic reticulum stress-Beclin1 autophagy regulatory pathway.J Immunol2017;199:1647-59
|
| [43] |
Sharma RB,Alonso LC.Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells.J Biol Chem2020;295:14164-77 PMCID:PMC7549035
|
| [44] |
Sintes J,Zhang S.mTOR intersects antibody-inducing signals from TACI in marginal zone B cells.Nat Commun2017;8:1462 PMCID:PMC5684130
|
| [45] |
Hu R,Jin L.NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer.Mol Cell Biol2015;35:379-90 PMCID:PMC4272419
|
| [46] |
Verzella D,Capece D.Life, death, and autophagy in cancer: NF-κB turns up everywhere.Cell Death Dis2020;11:210 PMCID:PMC7105474
|
| [47] |
Shi Z,Yuan M.Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells.Sci Rep2019;9:3210 PMCID:PMC6397152
|
| [48] |
Jang JE,Jeung HK.PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells.J Exp Clin Cancer Res2020;39:66 PMCID:PMC7158163
|
| [49] |
White-Gilbertson S,Liu B.The role of endoplasmic reticulum stress in maintaining and targeting multiple myeloma: a double-edged sword of adaptation and apoptosis.Front Genet2013;4:109 PMCID:PMC3678081
|
| [50] |
Michallet AS,Taillardet M,Genestier L.Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells.PLoS One2011;6:e25820 PMCID:PMC3196518
|
| [51] |
Bagratuni T,Mavrianou-Koutsoukou N.Characterization of a PERK kinase inhibitor with anti-myeloma activity.Cancers2020;12:2864 PMCID:PMC7601861
|
| [52] |
Allegra A,Barone P,Gangemi S.Epigenetic crosstalk between malignant plasma cells and the tumour microenvironment in multiple myeloma.Cancers2022;14:2597 PMCID:PMC9179362
|
| [53] |
Cippitelli M,Kosta A.Role of NF-κB signaling in the interplay between multiple myeloma and mesenchymal stromal cells.Int J Mol Sci2023;24:1823 PMCID:PMC9916119
|
| [54] |
Gu J,Zhang Y,Zhou Z.Cytokine profiles in patients with newly diagnosed multiple myeloma: survival is associated with IL-6 and IL-17A levels.Cytokine2021;138:155358
|
| [55] |
Sanchez E,Tang G.Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma.Clin Cancer Res2016;22:3383-97
|
| [56] |
Yan Y,Wang X.The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer.J Exp Clin Cancer Res2019;38:171 PMCID:PMC6480893
|
| [57] |
Frassanito MA,Desantis V.Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients.Leukemia2016;30:640-8
|
| [58] |
Liu Z,He J.Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation.Oncotarget2015;6:34329-41 PMCID:PMC4741456
|
| [59] |
Cea M,Fulciniti M.Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.Blood2012;120:3519-29 PMCID:PMC3482862
|
| [60] |
Spaan I,van de Stolpe A.Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential.J Hematol Oncol2018;11:67 PMCID:PMC5960217
|
| [61] |
Liu YS,Qiu YY,Chen Y.Molecular mechanism of Wnt signal pathway in multiple myeloma cell line H929 cell autophagy.Eur Rev Med Pharmacol Sci2018;22:3327-32
|
| [62] |
Pereira IEG,Cominal JG,de Castro FA.Role of endothelial cells in hematological malignancies.EJMO2022;6:210-8
|
| [63] |
Tenreiro MM,Brito MA.Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall.Angiogenesis2017;20:443-62
|
| [64] |
Wang X,Yao C.Angiogenic activity of mesenchymal stem cells in multiple myeloma.Cancer Invest2011;29:37-41
|
| [65] |
Rao L,Leone P.HB-EGF-EGFR signaling in bone marrow endothelial cells mediates angiogenesis associated with multiple myeloma.Cancers2020;12:173 PMCID:PMC7017291
|
| [66] |
Di Lernia G,Solimando AG.Bortezomib treatment modulates autophagy in multiple myeloma.J Clin Med2020;9:552 PMCID:PMC7073518
|
| [67] |
Muz B,De La Puente P,Vij R.Hypoxia induces drug resistance in multiple myeloma.Blood2013;122:1852
|
| [68] |
Lamy L,Emre NCT.Control of autophagic cell death by caspase-10 in multiple myeloma.Cancer Cell2013;23:435-49 PMCID:PMC4059832
|
| [69] |
Kozalak G.Efficacy of multi-drug resistance transporters and glutathione S-transferase P-1 at developing bortezomib resistance in multiple myeloma cell lines.Lat Am J Pharm2021;40:2709-16Available from: https://www.latamjpharm.org/resumenes/40/11/LAJOP_40_11_1_23.pdf. [Last accessed on 22 Dec 2023]
|
| [70] |
Milani M,Mellor HR.The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib.Cancer Res2009;69:4415-23
|
| [71] |
Nikesitch N,Ho LL.The role of chaperone-mediated autophagy in Bortezomib resistant multiple myeloma.Cells2021;10:3464 PMCID:PMC8700264
|
| [72] |
Lu Y,Xu H,Jin F.Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma.Cancer Sci2018;109:2706-16 PMCID:PMC6125445
|
| [73] |
Zhang M,Liu Z.Anti-β2-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy.Oncotarget2015;6:8567-78 PMCID:PMC4496167
|
| [74] |
Huang X,Yao S.NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma.Cell Death Dis2022;13:197 PMCID:PMC8891287
|
| [75] |
Xia J,Meng B.NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma.Mol Oncol2020;14:763-78 PMCID:PMC7138399
|
| [76] |
Abdel Malek MAY,Malek E.Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma.Oncotarget2015;6:3098-110 PMCID:PMC4413640
|
| [77] |
Wu H,Yang Q.MIR145-3p promotes autophagy and enhances bortezomib sensitivity in multiple myeloma by targeting HDAC4.Autophagy2020;16:683-97 PMCID:PMC7138223
|
| [78] |
Tucci M,Savonarola A.An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation.Exp Hematol2014;42:897-908.e1
|
| [79] |
Sola B,de Medina P.Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism.Oncotarget2013;4:911-22 PMCID:PMC3757248
|
| [80] |
Riz I,Hawley RG.KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models.Oncotarget2015;6:14814-31 PMCID:PMC4558117
|
| [81] |
Pan YZ,Bai H,Zhang Q.Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin.Genet Mol Res2015;14:5621-9
|
| [82] |
Bellot G,Gounon P.Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains.Mol Cell Biol2009;29:2570-81 PMCID:PMC2682037
|
| [83] |
Papandreou I,Laderoute K.Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L.Cell Death Differ2008;15:1572-81
|
| [84] |
Gastelum G,Lyons K.Can targeting hypoxia-mediated acidification of the bone marrow microenvironment kill myeloma tumor cells?.Front Oncol2021;11:703878 PMCID:PMC8327776
|
| [85] |
Ikeda S.Impact of hypoxia on the pathogenesis and therapy resistance in multiple myeloma.Cancer Sci2021;112:3995-4004 PMCID:PMC8486179
|
| [86] |
Infantino V,Convertini P,Iacobazzi V.Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target.Int J Mol Sci2021;22:5703 PMCID:PMC8199012
|
| [87] |
Ikeda S,Matsuda Y,Takahashi N.Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma.Cancer Sci2020;111:4088-101 PMCID:PMC7648043
|
| [88] |
Bhaskar A.Hypoxia inducible factor-1 alpha and multiple myeloma.Int J Adv Res2016;4:706-15 PMCID:PMC4760640
|
| [89] |
Darawshi O,Naamat SG.An mTORC1 to HRI signaling axis promotes cytotoxicity of proteasome inhibitors in multiple myeloma.Cell Death Dis2022;13:969 PMCID:PMC9674573
|
| [90] |
Eliopoulos AG,Gorgoulis VG.DNA damage response and autophagy: a meaningful partnership.Front Genet2016;7:204 PMCID:PMC5116470
|
| [91] |
Alexander A,Walker CL.ATM engages the TSC2/mTORC1 signaling node to regulate autophagy.Autophagy2010;6:672-3 PMCID:PMC3259740
|
| [92] |
Kim J,Viollet B.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat Cell Biol2011;13:132-41 PMCID:PMC3987946
|
| [93] |
Desantis A,Catena V.Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy.EMBO J2015;34:1214-30 PMCID:PMC4426481
|
| [94] |
Kim JS,Kim M.Sestrin2 inhibits mTORC1 through modulation of GATOR complexes.Sci Rep2015;5:9502 PMCID:PMC4377584
|
| [95] |
Copetti T,Dalla E,Schneider C.p65/RelA modulates BECN1 transcription and autophagy.Mol Cell Biol2009;29:2594-608 PMCID:PMC2682036
|
| [96] |
Rodríguez-Vargas JM,Ruiz-Ruiz C.ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy.Cell Res2012;22:1181-98 PMCID:PMC3391023
|
| [97] |
Feng Z,de Stanchina E.The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways.Cancer Res2007;67:3043-53
|
| [98] |
Eisenberg-Lerner A.PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk.Cell Death Differ2012;19:788-97 PMCID:PMC3321617
|
| [99] |
Wang L,Sun M,Qian J.High mobility group box 1-mediated autophagy promotes neuroblastoma cell chemoresistance.Oncol Rep2015;34:2969-76
|
| [100] |
Guo X,Zhang E.HMGB1 knockdown increases MM cell vulnerability by regulating autophagy and DNA damage repair.J Exp Clin Cancer Res2018;37:205 PMCID:PMC6114506
|
| [101] |
Roy M,Xiao X.Lycorine downregulates HMGB1 to inhibit autophagy and enhances Bortezomib activity in multiple myeloma.Theranostics2016;6:2209-24 PMCID:PMC5135444
|
| [102] |
Gao D,Li HP,Zhang YP.LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple myeloma.J Cell Biochem2017;118:3341-8
|
| [103] |
Balsas P,Galán-Malo P,Marzo I.Cooperation between Apo2L/TRAIL and Bortezomib in multiple myeloma apoptosis.Biochem Pharmacol2009;77:804-12
|
| [104] |
Al-Odat O,Chitren RJ.Mcl-1 inhibition: managing malignancy in multiple myeloma.Front Pharmacol2021;12:699629 PMCID:PMC8327170
|
| [105] |
Öksüzoğlu E.Inhibition of apoptosis may lead to the development of bortezomib resistance in multiple myeloma cancer cells.Turkish J Biochem2021;46:65-71
|
| [106] |
Roy P,Basak S.The NF-κB activating pathways in multiple myeloma.Biomedicines2018;6:59 PMCID:PMC6027071
|
| [107] |
Hoang B,Shi Y,Lichtenstein A.Effect of autophagy on multiple myeloma cell viability.Mol Cancer Ther2009;8:1974-84
|
| [108] |
Zeng R,Zhao S.Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1.Acta Pharmacol Sin2012;33:91-100 PMCID:PMC4010261
|
| [109] |
Strappazzon F,Campello S.Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy.EMBO J2011;30:1195-208 PMCID:PMC3094111
|
| [110] |
Sun WL.Ambra1 in autophagy and apoptosis: implications for cell survival and chemotherapy resistance.Oncol Lett2016;12:367-74 PMCID:PMC4906955
|
| [111] |
Mohammadi K,Angaji SA,Mahjoobi F.Association study of Bif-1 gene expression with histopathological characteristics and hormone receptors in breast cancer.BMC Womens Health2022;22:471 PMCID:PMC9701003
|
| [112] |
Sui X,Ye L.p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents.Cancer Lett2014;344:174-9
|
| [113] |
You L,Li H.The role of STAT3 in autophagy.Autophagy2015;11:729-39 PMCID:PMC4509450
|
| [114] |
Ramakrishnan V.PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise.Leuk Lymphoma2018;59:2524-34
|
| [115] |
Fu YF,Gao M,Liu J.Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway.Oncotarget2017;8:61093-106 PMCID:PMC5617409
|
| [116] |
Jin Z,Pitti R.Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling.Cell2009;137:721-35
|
| [117] |
Manfrini N,Miluzio A.FAM46C and FNDC3A are multiple myeloma tumor suppressors that act in concert to impair clearing of protein aggregates and autophagy.Cancer Res2020;80:4693-706
|
| [118] |
Fucci C,Riva E.The interaction of the tumor suppressor FAM46C with p62 and FNDC3 proteins integrates protein and secretory homeostasis.Cell Rep2020;32:108162
|
| [119] |
Wu Z,Zou L,Liu X.Metformin induces myeloma cells necrosis and apoptosis and it is considered for therapeutic use.J Chemother2023;35:131-41
|
| [120] |
Jagannathan S,Malek E.Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib.Leukemia2015;29:2184-91 PMCID:PMC4635337
|
| [121] |
Wang Y,Yan Z.Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.J Exp Clin Cancer Res2018;37:63 PMCID:PMC5859411
|
| [122] |
Hibino S,Hangai S et al.Tumor cell-derived spermidine is an oncometabolite that suppresses TCR clustering for intratumoral CD8+ T cell activation.Proc Natl Acad Sci U S A2023;120:e2305245120 PMCID:PMC10268234
|
| [123] |
Ma R,Peng Y.Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells.Acta Biochim Biophys Sin2021;53:775-83
|
| [124] |
Jin HG,Wu GH.Combining the mammalian target of rapamycin inhibitor, rapamycin, with resveratrol has a synergistic effect in multiple myeloma.Oncol Lett2018;15:6257-64 PMCID:PMC5920858
|
| [125] |
Wang G,Chen X.The novel autophagy inhibitor elaiophylin exerts antitumor activity against multiple myeloma with mutant TP53 in part through endoplasmic reticulum stress-induced apoptosis.Cancer Biol Ther2017;18:584-95 PMCID:PMC5653199
|
| [126] |
Wu CH,Yen IC.4-acetylantroquinonol B inhibits osteoclastogenesis by inhibiting the autophagy pathway in a simulated microgravity model.Int J Mol Sci2020;21:6971 PMCID:PMC7555662
|
| [127] |
Li N,Chen J,Wang L.Perturbation of autophagy by a Beclin 1-targeting stapled peptide induces mitochondria stress and inhibits proliferation of pancreatic cancer cells.Cancers2023;15:953 PMCID:PMC9913477
|
| [128] |
Ailawadhi S,Moustafa MA.Ibrutinib, lenalidomide and dexamethasone in patients with relapsed and/or refractory multiple myeloma: phase I trial results.Hematol Oncol2022;40:695-703
|
| [129] |
Domenger A,Baron L.The Sec61 translocon is a therapeutic vulnerability in multiple myeloma.EMBO Mol Med2022;14:e14740 PMCID:PMC8899908
|
| [130] |
Shi Y,Hoang B.Retracted article: Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress.Oncogene2016;35:1015-24
|
| [131] |
Suder A.Final results of phase I study of the oral class I PI3K inhibitor CH5132799 in patients with advanced solid tumours.Ann Oncol2013;24:i33
|
| [132] |
Kikuchi H,Mcenery M.Inhibition of PI3K class IA kinases using GDC-0941 overcomes cytoprotection of multiple myeloma cells in the osteoclastic bone marrow microenvironment enhancing the efficacy of current clinical therapeutics.Cancers2023;15:462 PMCID:PMC9856454
|
| [133] |
Attar-Schneider O,Zismanov V,Rashid G.Bevacizumab attenuates major signaling cascades and eIF4E translation initiation factor in multiple myeloma cells.Lab Invest2012;92:178-90
|
| [134] |
Wang JZ,Zeng ZY.[Effects of autophagy regulating drugs on proliferation, apoptosis and autophagy of multiple myeloma cells].Zhongguo Shi Yan Xue Ye Xue Za Zhi2018;26:817-23
|
| [135] |
Hsu J,Krajewski S.The AKT kinase is activated in multiple myeloma tumor cells.Blood2001;98:2853-5
|
| [136] |
Chen P,Wang B.PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft.Ann Hematol2018;97:865-75
|
| [137] |
Moriya S,Yamasaki K.Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells.Int J Oncol2015;46:474-86 PMCID:PMC4277245
|
| [138] |
Waldschmidt JM,Ihorst G.Safety and efficacy of vorinostat, bortezomib, doxorubicin and dexamethasone in a phase I/II study for relapsed or refractory multiple myeloma (VERUMM study: vorinostat in elderly, relapsed and unfit multiple myeloma).Haematologica2018;103:e473-9 PMCID:PMC6165805
|
| [139] |
Montanari F,Marcus S,Malankar A.A phase II trial of chloroquine in combination with Bortezomib and Cyclophosphamide in patients with relapsed and refractory multiple myeloma.Blood2014;124:5775
|
| [140] |
Salimi A,Schemionek-Reinders M.Targeting autophagy increases the efficacy of proteasome inhibitor treatment in multiple myeloma by induction of apoptosis and activation of JNK.BMC Cancer2022;22:735 PMCID:PMC9258169
|
| [141] |
McAfee Q,Samanta A.Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency.Proc Natl Acad Sci U S A2012;109:8253-8 PMCID:PMC3361415
|
| [142] |
Fatfat Z,Gali-Muhtasib H.Therapeutic potential of thymoquinone in combination therapy against cancer and cancer stem cells.World J Clin Oncol2021;12:522-43 PMCID:PMC8317652
|
| [143] |
Günther A,Burger R.Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study.Haematologica2015;100:541-7 PMCID:PMC4380728
|
| [144] |
Liu H,Fu R.Everolimus shows synergistic anti-myeloma effects with bortezomib via the AKT/mTOR pathway.Blood2017;130:5396
|
| [145] |
Rizzieri DA,Dipersio JF.A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies.Clin Cancer Res2008;14:2756-62
|
| [146] |
Ghobrial IM,Vij R.Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study.Lancet Oncol2011;12:263-72
|
| [147] |
Cirstea D,Hideshima T.Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor, AZD8055, in multiple myeloma.Mol Cancer Ther2014;13:2489-500
|
| [148] |
Peterson TR,Thoreen CC.DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival.Cell2009;137:873-86 PMCID:PMC2758791
|
| [149] |
Lamanuzzi A,Desantis V.Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma.Oncotarget2018;9:20563-77 PMCID:PMC5945497
|
| [150] |
Richardson PG,Ben-Yehuda D.Randomized, placebo-controlled, phase 3 study of perifosine combined with bortezomib and dexamethasone in patients with relapsed, refractory multiple myeloma previously treated with bortezomib.EJHaem2020;1:94-102 PMCID:PMC9175725
|
| [151] |
Dolly SO,Bendell JC.Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors.Clin Cancer Res2016;22:2874-84 PMCID:PMC4876928
|
| [152] |
Sternke-Hoffmann R,Norrild RK.Widespread amyloidogenicity potential of multiple myeloma patient-derived immunoglobulin light chains.BMC Biol2023;21:21 PMCID:PMC9898917
|
| [153] |
Savvidou I,Spencer A.The role of autophagy in multiple myeloma progression.Blood2017;130:5355
|
| [154] |
Kawaguchi T,Moriya S.Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress.Int J Oncol2011;38:643-54
|
| [155] |
Liu J,Wolowiec D.Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway.Blood2007;110:296-304
|
| [156] |
Gazitt Y,Rothenberg M.A phase II trial with gemcitabine and paclitaxel for the treatment of refractory and relapsed multiple myeloma patients.Oncol Rep2006;16:877-84
|
| [157] |
Veldhoen RA,Hemmerling DR.The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis.Oncogene2013;32:736-46
|
| [158] |
Vogl DT,Tan KS.Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.Autophagy2014;10:1380-90 PMCID:PMC4203515
|
| [159] |
Vogl DT,Jagannath S.Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with Bortezomib and Dexamethasone for relapsed or refractory multiple myeloma.Clin Cancer Res2017;23:3307-15
|
| [160] |
Yee AJ,Supko JG.Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial.Lancet Oncol2016;17:1569-78
|
| [161] |
Yee AJ,Marcheselli R.Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide.Br J Haematol2014;166:401-9
|
| [162] |
Solomon VR.Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies.Eur J Pharmacol2009;625:220-33
|
| [163] |
San-Miguel JF,Yoon SS.Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial.Lancet Oncol2014;15:1195-206
|
| [164] |
Li J,Lei Y.Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells.Autophagy2010;6:711-24
|
| [165] |
Watanabe T,Chosa M.Schwann cell autophagy induced by SAHA, 17-AAG, or clonazepam can reduce bortezomib-induced peripheral neuropathy.Br J Cancer2010;103:1580-7 PMCID:PMC2990589
|
| [166] |
Van Nuffel AM, Sukhatme V, Pantziarka P, Meheus L, Sukhatme VP, Bouche G. Repurposing drugs in oncology (ReDO)-clarithromycin as an anti-cancer agent.Ecancermedicalscience2015;9:513 PMCID:PMC4341996
|
| [167] |
Takemori N,Hoshino K,Kojima M.A novel combination of bortezomib, lenalidomide, and clarithromycin produced stringent complete response in refractory multiple myeloma complicated with diabetes mellitus - clinical significance and possible mechanisms: a case report.J Med Case Rep2018;12:40 PMCID:PMC5816938
|
| [168] |
Ma Y,Yu K.NVP-BEZ235-induced autophagy as a potential therapeutic approach for multiple myeloma.Am J Transl Res2019;11:87-105 PMCID:PMC6357299
|
| [169] |
Leng H,Li L.Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease.Nat Commun2022;13:7868 PMCID:PMC9780346
|
| [170] |
Han Q,Xu Y.Solamargine induces autophagy-mediated apoptosis and enhances bortezomib activity in multiple myeloma.Clin Exp Pharmacol Physiol2022;49:674-85 PMCID:PMC9310729
|
| [171] |
Dykstra KM,Born EJ,Holstein SA.Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells.Oncotarget2015;6:41535-49 PMCID:PMC4747172
|
| [172] |
Wu X,Zhang E.Dihydroartemisinin modulates apoptosis and autophagy in multiple myeloma through the P38/MAPK and Wnt/β-catenin signaling pathways.Oxid Med Cell Longev2020;2020:6096391 PMCID:PMC7448255
|
| [173] |
Palacios C,López-Pérez AI,López-Rivas A.Autophagy inhibition sensitizes multiple myeloma cells to 17-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis.Leuk Res2010;34:1533-8
|
| [174] |
Cao B,Zhou X.Clioquinol induces pro-death autophagy in leukemia and myeloma cells by disrupting the mTOR signaling pathway.Sci Rep2014;4:5749 PMCID:PMC4102920
|
| [175] |
Li A,Jing Z.Trifluoperazine induces cellular apoptosis by inhibiting autophagy and targeting NUPR1 in multiple myeloma.FEBS Open Bio2020;10:2097-106 PMCID:PMC7530380
|
| [176] |
Zhou H,Zeng C.PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines.Oncotarget2017;8:80770-89 PMCID:PMC5655238
|
| [177] |
Liao A,Zhao Q.Autophagy induced by FTY720 promotes apoptosis in U266 cells.Eur J Pharm Sci2012;45:600-5
|
| [178] |
Choi JR,di Bari I.In vitro human cancer models for biomedical applications.Cancers2022;14:2284 PMCID:PMC9099454
|
| [179] |
Mehta P,Ten Dijke P.Microfluidics meets 3D cancer cell migration.Trends Cancer2022;8:683-97
|
| [180] |
Sung HW,Chu CH.Sensitizing drug-resistant cancer cells from blood using microfluidic electroporator.PLoS One2022;17:e0264907 PMCID:PMC8903260
|