Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance

Fatih M. Uckun , Sanjive Qazi

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (4) : 902 -16.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (4) :902 -16. DOI: 10.20517/cdr.2022.78
review-article

Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance

Author information +
History +
PDF

Abstract

Aim: The main goal of this study was to elucidate at the transcript level the tyrosine kinase expression profiles of primary leukemia cells from mixed lineage leukemia 1 gene rearranged (KMT2A/MLL-R+) acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients.

Methods: We evaluated protein tyrosine kinase (PTK) gene expression profiles of primary leukemic cells in KMT2A/MLL-R+ AML and ALL patients using publicly available archived datasets.

Results: Our studies provided unprecedented evidence that the genetic signatures of KMT2A/MLL-R+ AML and ALL cells are characterized by transcript-level overexpression of specific PTK. In infants, children and adults with KMT2A/MLL-R+ ALL, as well as pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, BTK, SYK, JAK2/JAK3, as well as several SRC family PTK were differentially amplified. In adults with KMT2A/MLL-R+ AML, the gene expression levels for SYK, JAK family kinase TYK2, and the SRC family kinases FGR and HCK were differentially amplified.

Conclusion: These results provide new insights regarding the clinical potential of small molecule inhibitors of these PTK, many of which are already FDA/EMA-approved for other indications, as components of innovative multi-modality treatment platforms against KMT2A/MLL-R+ acute leukemias.

Keywords

AML / ALL / MLL gene / tyrosine kinase / Leukemia

Cite this article

Download citation ▾
Fatih M. Uckun, Sanjive Qazi. Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance. Cancer Drug Resistance, 2022, 5(4): 902-16 DOI:10.20517/cdr.2022.78

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X.Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins.J Hematol Oncol2021;14:56 PMCID:PMC8022399

[2]

Arber DA,Hasserjian R.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.Blood2016;127:2391-405

[3]

Bueno C,Catalina P,Menendez P.Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement.Leukemia2011;25:400-10

[4]

Britten O,Tosi S.MLL-rearranged acute leukemia with t(4;11)(q21;q23)-current treatment options. is there a role for car-t cell therapy?.Cells2019;8:1341 PMCID:PMC6912830

[5]

Kantarjian H,DiNardo C.Acute myeloid leukemia: current progress and future directions.Blood Cancer J2021;11:41 PMCID:PMC7900255

[6]

Calvo C,Leverger G,Baruchel A.Infant acute myeloid leukemia: a unique clinical and biological entity.Cancers (Basel)2021;13:777 PMCID:PMC7918235

[7]

Hoffman AE,Kaspers GJ.Pediatric relapsed acute myeloid leukemia: a systematic review.Expert Rev Anticancer Ther2021;21:45-52

[8]

Padmakumar D,Gopinath P.A concise review on the molecular genetics of acute myeloid leukemia.Leuk Res2021;111:106727

[9]

Uddin R,Mousa SA.Acute myeloid leukemia mutations and future mechanistic target to overcome resistance.Curr Treat Options Oncol2021;22:76

[10]

Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic leukemia.Curr Hematol Malig Rep2020;15:83-9

[11]

Yeung DTO,White DL.B-cell acute lymphoblastic leukaemia: recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification.Br J Haematol2022;197:13-27

[12]

Zotova OV,Valchuk MO.11q23/MLL rearrangements in adult acute leukemia.Exp Oncol2021;43:229-33

[13]

Richard-Carpentier G,Tang G.Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience.Blood Adv2021;5:5415-9 PMCID:PMC9153023

[14]

Goel H,Gupta I.Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia.Am J Blood Res2021;11:472-97 PMCID:PMC8610791

[15]

Fazio G,De Lorenzo P.Recurrent genetic fusions redefine MLL germ line acute lymphoblastic leukemia in infants.Blood2021;137:1980-4

[16]

Meyer C,Gröger D.The MLL recombinome of acute leukemias in 2017.Leukemia2018;32:273-84 PMCID:PMC5808070

[17]

Shih LY,Fu JF.Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement.Leukemia2006;20:218-23

[18]

Tomizawa D,Sato T.Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group.Leukemia2007;21:2258-63

[19]

Reaman GH,Sensel MG.Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group.J Clin Oncol1999;17:445-55

[20]

Qazi S.Augmented expression of the IL3RA/CD123 gene in MLL/KMT2A-rearranged pediatric AML and infant ALL.Onco2022;2:245-63

[21]

Uckun FM.Identification and targeting of CD22ΔE12 as a molecular RNAi target to overcome drug resistance in high-risk B-lineage leukemias and lymphomas.Cancer Drug Resist2018;1:30-47 PMCID:PMC6883925

[22]

Uckun FM,Qazi S.Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia.J Clin Invest2015;125:1006-18 PMCID:PMC4362237

[23]

Uckun FM,Qazi S.Development of polypeptide-based nanoparticles for non-viral delivery of CD22 RNA Trans-splicing molecule as a new precision medicine candidate against B-lineage ALL.EBioMedicine2015;2:649-59 PMCID:PMC4534679

[24]

Uckun FM,Ma H,Qazi S.CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia.Proc Natl Acad Sci U S A2010;107:16852-7 PMCID:PMC2947921

[25]

Grembecka J,Shi A.Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.Nat Chem Biol2012;8:277-84 PMCID:PMC3401603

[26]

Issa GC,DiNardo CD,Kantarjian HM.Therapeutic implications of menin inhibition in acute leukemias.Leukemia2021;35:2482-95

[27]

Bai H,Lei H,Ma M.Menin-MLL protein-protein interaction inhibitors: a patent review (2014-2021).Expert Opin Ther Pat2022;32:507-22

[28]

Tsakaneli A.Drug repurposing for targeting acute leukemia with.KMT2A12:741413 PMCID:PMC8478155

[29]

Roskoski R Jr.The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias.Pharmacol Res2020;155:104725

[30]

Bhullar KS,McGowan EM.Kinase-targeted cancer therapies: progress, challenges and future directions.Mol Cancer2018;17:48 PMCID:PMC5817855

[31]

Scheijen B.Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease.Oncogene2002;21:3314-33

[32]

Ribera JM.Philadelphia chromosome-like acute lymphoblastic leukemia. Still a pending matter.Haematologica2021;106:1514-6 PMCID:PMC8168492

[33]

Jain N,McKay PZ.Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial.Blood2017;130(suppl 1):1322

[34]

van der Veer A,Willemse ME.Interference with pre-B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia.Blood Cancer J2014;4:e181 PMCID:PMC3944663

[35]

Buchner M.Targeting the B-cell receptor signaling pathway in B lymphoid malignancies.Curr Opin Hematol2014;21:341-9 PMCID:PMC4136419

[36]

Slayton WB,Kairalla JA.Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622.J Clin Oncol2018;36:2306-14 PMCID:PMC6067800

[37]

Schultz KR,Heerema NA.; Children’s Oncology Group. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031.Leukemia2014;28:1467-71 PMCID:PMC4282929

[38]

Warraich Z,Thai T.Relapse prevention with tyrosine kinase inhibitors after allogeneic transplantation for philadelphia chromosome-positive acute lymphoblast leukemia: a systematic review.Biol Blood Marrow Transplant2020;26:e55-64

[39]

Foà R,Vitale A.GIMEMA InvestigatorsDasatinib-blinatumomab for ph-positive acute lymphoblastic leukemia in adults.N Engl J Med2020;383:1613-23

[40]

Foà R,Vignetti M.GIMEMA Acute Leukemia Working PartyDasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.Blood2011;118:6521-8

[41]

Samra B,Ravandi F,Short NJ.Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions.J Hematol Oncol2020;13:70 PMCID:PMC7275444

[42]

Jabbour E,Ravandi F.Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study.Lancet Oncol2015;16:1547-55 PMCID:PMC4816046

[43]

Short NJ,Ravandi F.Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.Blood2019;134(Supplement_1):283

[44]

Rousselot P,Gokbuget N.Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL.Blood2016;128:774-82 PMCID:PMC5085255

[45]

Chiaretti S,Vitale A.Dasatinib-blinatumomab combination for the front-line treatment of adult Ph + ALL patients. Updated results of the Gimema LAL2116 D-Alba trial.Blood2019;134(Supplement_1):740

[46]

Jabbour E,Duh MS.Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.Clin Lymphoma Myeloma Leuk2018;18:257-65

[47]

Jain N,Ravandi F.Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph + ALL or CML in lymphoid blast phase.Blood2017;130(Supplement 1):143

[48]

Chen M,Lin Y,Zhang L.Use of tyrosine kinase inhibitors for paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia: a systematic review and meta-analysis.BMJ Open2021;11:e042814 PMCID:PMC7817804

[49]

Short NJ,Jabbour E.SOHO state of the art updates & next questions: intensive and non-intensive approaches for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.Clin Lymphoma Myeloma Leuk2022;22:61-6

[50]

Gilliland DG.The roles of FLT3 in hematopoiesis and leukemia.Blood2002;100:1532-42

[51]

Meshinchi S,Stirewalt DL.Clinical implications of FLT3 mutations in pediatric AML.Blood2006;108:3654-61 PMCID:PMC1895470

[52]

Chillón MC,López-Jorge CE.Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia.Leukemia2012;26:2360-6

[53]

Zhang Y,Wang F.The mutational spectrum of FLT3 gene in acute lymphoblastic leukemia is different from acute myeloid leukemia.Cancer Gene Ther2020;27:81-8

[54]

Eucker J,Zhou Y.TKI258, a multi-tyrosine kinase inhibitor is efficacious against human infant/childhood lymphoblastic leukemia in vitro.Anticancer Res34:4899-907

[55]

Mathew NR,Braun L.Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.Nat Med2018;24:282-91 PMCID:PMC6029618

[56]

Qazi S.Gene expression profiles of infant acute lymphoblastic leukaemia and its prognostically distinct subsets.Br J Haematol2010;149:865-73

[57]

Uckun FM,Qazi S.JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.Expert Rev Anticancer Ther2011;11:37-48

[58]

Uckun FM.SYK as a new therapeutic target in B-cell precursor acute lymphoblastic leukemia.J Cancer Ther2014;5:124-31 PMCID:PMC4026065

[59]

Uckun FM.Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas.Exp Rev Antic Ther2010;10:1407-18

[60]

Uckun FM,Ma H,Ozer Z.STAT3 is a substrate of syk tyrosine kinase in b-lineage leukemia/lymphoma cells exposed to oxidative stress.Proc Natl Acad Sci U S A2010;107:2902-7 PMCID:PMC2840303

[61]

Uckun FM,Jan ST,Qazi S.Targeting syk kinase-dependent anti-apoptotic resistance pathway in b-lineage acute lymphoblastic leukemia (all) cells with a potent SYK inhibitory pentapeptide mimic.Brit J Hematol2010;149:508-17

[62]

Uckun FM,Cely I.Nanoscale liposomal formulation of a SYK p-site inhibitor against b-precursor leukemia.Blood2013;121:4348-54 PMCID:PMC3663427

[63]

Milosevic Feenstra JD,Schischlik F.PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms.Am J Hematol2022;97:390-400 PMCID:PMC9306481

[64]

Prestipino A,Aumann K.Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms.Sci Transl Med2018;10:eaam7729 PMCID:PMC6034655

AI Summary AI Mindmap
PDF

38

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/