PDF
Abstract
Aim: The main goal of this study was to elucidate at the transcript level the tyrosine kinase expression profiles of primary leukemia cells from mixed lineage leukemia 1 gene rearranged (KMT2A/MLL-R+) acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients.
Methods: We evaluated protein tyrosine kinase (PTK) gene expression profiles of primary leukemic cells in KMT2A/MLL-R+ AML and ALL patients using publicly available archived datasets.
Results: Our studies provided unprecedented evidence that the genetic signatures of KMT2A/MLL-R+ AML and ALL cells are characterized by transcript-level overexpression of specific PTK. In infants, children and adults with KMT2A/MLL-R+ ALL, as well as pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, BTK, SYK, JAK2/JAK3, as well as several SRC family PTK were differentially amplified. In adults with KMT2A/MLL-R+ AML, the gene expression levels for SYK, JAK family kinase TYK2, and the SRC family kinases FGR and HCK were differentially amplified.
Conclusion: These results provide new insights regarding the clinical potential of small molecule inhibitors of these PTK, many of which are already FDA/EMA-approved for other indications, as components of innovative multi-modality treatment platforms against KMT2A/MLL-R+ acute leukemias.
Keywords
AML
/
ALL
/
MLL gene
/
tyrosine kinase
/
Leukemia
Cite this article
Download citation ▾
Fatih M. Uckun, Sanjive Qazi.
Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance.
Cancer Drug Resistance, 2022, 5(4): 902-16 DOI:10.20517/cdr.2022.78
| [1] |
Li X.Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins.J Hematol Oncol2021;14:56 PMCID:PMC8022399
|
| [2] |
Arber DA,Hasserjian R.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.Blood2016;127:2391-405
|
| [3] |
Bueno C,Catalina P,Menendez P.Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement.Leukemia2011;25:400-10
|
| [4] |
Britten O,Tosi S.MLL-rearranged acute leukemia with t(4;11)(q21;q23)-current treatment options. is there a role for car-t cell therapy?.Cells2019;8:1341 PMCID:PMC6912830
|
| [5] |
Kantarjian H,DiNardo C.Acute myeloid leukemia: current progress and future directions.Blood Cancer J2021;11:41 PMCID:PMC7900255
|
| [6] |
Calvo C,Leverger G,Baruchel A.Infant acute myeloid leukemia: a unique clinical and biological entity.Cancers (Basel)2021;13:777 PMCID:PMC7918235
|
| [7] |
Hoffman AE,Kaspers GJ.Pediatric relapsed acute myeloid leukemia: a systematic review.Expert Rev Anticancer Ther2021;21:45-52
|
| [8] |
Padmakumar D,Gopinath P.A concise review on the molecular genetics of acute myeloid leukemia.Leuk Res2021;111:106727
|
| [9] |
Uddin R,Mousa SA.Acute myeloid leukemia mutations and future mechanistic target to overcome resistance.Curr Treat Options Oncol2021;22:76
|
| [10] |
Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic leukemia.Curr Hematol Malig Rep2020;15:83-9
|
| [11] |
Yeung DTO,White DL.B-cell acute lymphoblastic leukaemia: recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification.Br J Haematol2022;197:13-27
|
| [12] |
Zotova OV,Valchuk MO.11q23/MLL rearrangements in adult acute leukemia.Exp Oncol2021;43:229-33
|
| [13] |
Richard-Carpentier G,Tang G.Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience.Blood Adv2021;5:5415-9 PMCID:PMC9153023
|
| [14] |
Goel H,Gupta I.Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia.Am J Blood Res2021;11:472-97 PMCID:PMC8610791
|
| [15] |
Fazio G,De Lorenzo P.Recurrent genetic fusions redefine MLL germ line acute lymphoblastic leukemia in infants.Blood2021;137:1980-4
|
| [16] |
Meyer C,Gröger D.The MLL recombinome of acute leukemias in 2017.Leukemia2018;32:273-84 PMCID:PMC5808070
|
| [17] |
Shih LY,Fu JF.Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement.Leukemia2006;20:218-23
|
| [18] |
Tomizawa D,Sato T.Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group.Leukemia2007;21:2258-63
|
| [19] |
Reaman GH,Sensel MG.Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group.J Clin Oncol1999;17:445-55
|
| [20] |
Qazi S.Augmented expression of the IL3RA/CD123 gene in MLL/KMT2A-rearranged pediatric AML and infant ALL.Onco2022;2:245-63
|
| [21] |
Uckun FM.Identification and targeting of CD22ΔE12 as a molecular RNAi target to overcome drug resistance in high-risk B-lineage leukemias and lymphomas.Cancer Drug Resist2018;1:30-47 PMCID:PMC6883925
|
| [22] |
Uckun FM,Qazi S.Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia.J Clin Invest2015;125:1006-18 PMCID:PMC4362237
|
| [23] |
Uckun FM,Qazi S.Development of polypeptide-based nanoparticles for non-viral delivery of CD22 RNA Trans-splicing molecule as a new precision medicine candidate against B-lineage ALL.EBioMedicine2015;2:649-59 PMCID:PMC4534679
|
| [24] |
Uckun FM,Ma H,Qazi S.CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia.Proc Natl Acad Sci U S A2010;107:16852-7 PMCID:PMC2947921
|
| [25] |
Grembecka J,Shi A.Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.Nat Chem Biol2012;8:277-84 PMCID:PMC3401603
|
| [26] |
Issa GC,DiNardo CD,Kantarjian HM.Therapeutic implications of menin inhibition in acute leukemias.Leukemia2021;35:2482-95
|
| [27] |
Bai H,Lei H,Ma M.Menin-MLL protein-protein interaction inhibitors: a patent review (2014-2021).Expert Opin Ther Pat2022;32:507-22
|
| [28] |
Tsakaneli A.Drug repurposing for targeting acute leukemia with.KMT2A12:741413 PMCID:PMC8478155
|
| [29] |
Roskoski R Jr.The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias.Pharmacol Res2020;155:104725
|
| [30] |
Bhullar KS,McGowan EM.Kinase-targeted cancer therapies: progress, challenges and future directions.Mol Cancer2018;17:48 PMCID:PMC5817855
|
| [31] |
Scheijen B.Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease.Oncogene2002;21:3314-33
|
| [32] |
Ribera JM.Philadelphia chromosome-like acute lymphoblastic leukemia. Still a pending matter.Haematologica2021;106:1514-6 PMCID:PMC8168492
|
| [33] |
Jain N,McKay PZ.Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial.Blood2017;130(suppl 1):1322
|
| [34] |
van der Veer A,Willemse ME.Interference with pre-B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia.Blood Cancer J2014;4:e181 PMCID:PMC3944663
|
| [35] |
Buchner M.Targeting the B-cell receptor signaling pathway in B lymphoid malignancies.Curr Opin Hematol2014;21:341-9 PMCID:PMC4136419
|
| [36] |
Slayton WB,Kairalla JA.Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622.J Clin Oncol2018;36:2306-14 PMCID:PMC6067800
|
| [37] |
Schultz KR,Heerema NA.; Children’s Oncology Group. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031.Leukemia2014;28:1467-71 PMCID:PMC4282929
|
| [38] |
Warraich Z,Thai T.Relapse prevention with tyrosine kinase inhibitors after allogeneic transplantation for philadelphia chromosome-positive acute lymphoblast leukemia: a systematic review.Biol Blood Marrow Transplant2020;26:e55-64
|
| [39] |
Foà R,Vitale A.GIMEMA InvestigatorsDasatinib-blinatumomab for ph-positive acute lymphoblastic leukemia in adults.N Engl J Med2020;383:1613-23
|
| [40] |
Foà R,Vignetti M.GIMEMA Acute Leukemia Working PartyDasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.Blood2011;118:6521-8
|
| [41] |
Samra B,Ravandi F,Short NJ.Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions.J Hematol Oncol2020;13:70 PMCID:PMC7275444
|
| [42] |
Jabbour E,Ravandi F.Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study.Lancet Oncol2015;16:1547-55 PMCID:PMC4816046
|
| [43] |
Short NJ,Ravandi F.Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.Blood2019;134(Supplement_1):283
|
| [44] |
Rousselot P,Gokbuget N.Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL.Blood2016;128:774-82 PMCID:PMC5085255
|
| [45] |
Chiaretti S,Vitale A.Dasatinib-blinatumomab combination for the front-line treatment of adult Ph + ALL patients. Updated results of the Gimema LAL2116 D-Alba trial.Blood2019;134(Supplement_1):740
|
| [46] |
Jabbour E,Duh MS.Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.Clin Lymphoma Myeloma Leuk2018;18:257-65
|
| [47] |
Jain N,Ravandi F.Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph + ALL or CML in lymphoid blast phase.Blood2017;130(Supplement 1):143
|
| [48] |
Chen M,Lin Y,Zhang L.Use of tyrosine kinase inhibitors for paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia: a systematic review and meta-analysis.BMJ Open2021;11:e042814 PMCID:PMC7817804
|
| [49] |
Short NJ,Jabbour E.SOHO state of the art updates & next questions: intensive and non-intensive approaches for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.Clin Lymphoma Myeloma Leuk2022;22:61-6
|
| [50] |
Gilliland DG.The roles of FLT3 in hematopoiesis and leukemia.Blood2002;100:1532-42
|
| [51] |
Meshinchi S,Stirewalt DL.Clinical implications of FLT3 mutations in pediatric AML.Blood2006;108:3654-61 PMCID:PMC1895470
|
| [52] |
Chillón MC,López-Jorge CE.Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia.Leukemia2012;26:2360-6
|
| [53] |
Zhang Y,Wang F.The mutational spectrum of FLT3 gene in acute lymphoblastic leukemia is different from acute myeloid leukemia.Cancer Gene Ther2020;27:81-8
|
| [54] |
Eucker J,Zhou Y.TKI258, a multi-tyrosine kinase inhibitor is efficacious against human infant/childhood lymphoblastic leukemia in vitro.Anticancer Res34:4899-907
|
| [55] |
Mathew NR,Braun L.Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.Nat Med2018;24:282-91 PMCID:PMC6029618
|
| [56] |
Qazi S.Gene expression profiles of infant acute lymphoblastic leukaemia and its prognostically distinct subsets.Br J Haematol2010;149:865-73
|
| [57] |
Uckun FM,Qazi S.JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.Expert Rev Anticancer Ther2011;11:37-48
|
| [58] |
Uckun FM.SYK as a new therapeutic target in B-cell precursor acute lymphoblastic leukemia.J Cancer Ther2014;5:124-31 PMCID:PMC4026065
|
| [59] |
Uckun FM.Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas.Exp Rev Antic Ther2010;10:1407-18
|
| [60] |
Uckun FM,Ma H,Ozer Z.STAT3 is a substrate of syk tyrosine kinase in b-lineage leukemia/lymphoma cells exposed to oxidative stress.Proc Natl Acad Sci U S A2010;107:2902-7 PMCID:PMC2840303
|
| [61] |
Uckun FM,Jan ST,Qazi S.Targeting syk kinase-dependent anti-apoptotic resistance pathway in b-lineage acute lymphoblastic leukemia (all) cells with a potent SYK inhibitory pentapeptide mimic.Brit J Hematol2010;149:508-17
|
| [62] |
Uckun FM,Cely I.Nanoscale liposomal formulation of a SYK p-site inhibitor against b-precursor leukemia.Blood2013;121:4348-54 PMCID:PMC3663427
|
| [63] |
Milosevic Feenstra JD,Schischlik F.PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms.Am J Hematol2022;97:390-400 PMCID:PMC9306481
|
| [64] |
Prestipino A,Aumann K.Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms.Sci Transl Med2018;10:eaam7729 PMCID:PMC6034655
|