New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers

Rachel Bayley , Ellie Sweatman , Martin R. Higgs

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) : 35 -44.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) :35 -44. DOI: 10.20517/cdr.2022.73
review-article

New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers

Author information +
History +
PDF

Abstract

The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP) ribose polymerase (PARP) inhibitors. However, the efficacy of these compounds is hampered by resistance, which is attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that repair PARP inhibitor-mediated damage. Here, we comment on recent findings by our group identifying the lysine methyltransferase SETD1A as a novel factor that conveys PARPi resistance. We discuss the implications, with a particular focus on epigenetic modifications and H3K4 methylation. We also deliberate on the mechanisms responsible, the consequences for the refinement of PARP inhibitor use in the clinic, and future possibilities to circumvent drug resistance in DNA-repair deficient cancers.

Keywords

Double strand break repair / histone methylation / PARP inhibitor / resistance / SETD1A / BOD1L / H3K4

Cite this article

Download citation ▾
Rachel Bayley, Ellie Sweatman, Martin R. Higgs. New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers. Cancer Drug Resistance, 2023, 6(1): 35-44 DOI:10.20517/cdr.2022.73

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chandra RA,Voncken FEM.Contemporary radiotherapy: present and future.Lancet2021;398:171-84

[2]

Jackson SP.The DNA-damage response in human biology and disease.Nature2009;461:1071-8 PMCID:PMC2906700

[3]

Hauer MH.Chromatin and nucleosome dynamics in DNA damage and repair.Genes Dev2017;31:2204-21 PMCID:PMC5769766

[4]

Beucher A,Tchouandong L.ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2.EMBO J2009;28:3413-27 PMCID:PMC2752027

[5]

Huertas P.DNA resection in eukaryotes: deciding how to fix the break.Nat Struct Mol Biol2010;17:11-6 PMCID:PMC2850169

[6]

Symington LS.Double-strand break end resection and repair pathway choice.Annu Rev Genet2011;45:247-71

[7]

Sallmyr A.Repair of DNA double-strand breaks by mammalian alternative end-joining pathways.J Biol Chem2018;293:10536-46 PMCID:PMC6036210

[8]

Callen E,Kruhlak MJ.53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions.Cell2013;153:1266-80 PMCID:PMC3713552

[9]

Escribano-Díaz C,Fradet-Turcotte A.A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice.Mol Cell2013;49:872-83

[10]

Chapman JR,Vannier JB.RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection.Mol Cell2013;49:858-71 PMCID:PMC3594748

[11]

Di Virgilio M,Yamane A.Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching.Science2013;339:711-5 PMCID:PMC3815530

[12]

Zimmermann M,Buonomo SB,de Lange T.53BP1 regulates DSB repair using Rif1 to control 5’ end resection.Science2013;339:700-4 PMCID:PMC3664841

[13]

Xu G,Brandsma I.REV7 counteracts DNA double-strand break resection and affects PARP inhibition.Nature2015;521:541-4 PMCID:PMC4671316

[14]

Boersma V,Segura-Bayona S.MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection.Nature2015;521:537-40 PMCID:PMC4481296

[15]

Noordermeer SM,Setiaputra D.The shieldin complex mediates 53BP1-dependent DNA repair.Nature2018;560:117-21 PMCID:PMC6141009

[16]

Mirman Z,Takai H.53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in.Nature2018;560:112-6 PMCID:PMC6072559

[17]

Dev H,Lescale C.Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells.Nat Cell Biol2018;20:954-65 PMCID:PMC6145444

[18]

Gupta R,Narita T.DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity.Cell2018;173:972-988.e23 PMCID:PMC8108093

[19]

Chapman JR,Boulton SJ.BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair.J Cell Sci2012;125:3529-34 PMCID:PMC3445322

[20]

Nakamura K,Becker JR.H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids.Nat Cell Biol2019;21:311-8 PMCID:PMC6420097

[21]

Bunting SF,Wong N.53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks.Cell2010;141:243-54 PMCID:PMC2857570

[22]

Zhang F,Wu J.PALB2 links BRCA1 and BRCA2 in the DNA-damage response.Curr Biol2009;19:524-9 PMCID:PMC2750839

[23]

Wei S,Yin Z.Histone methylation in DNA repair and clinical practice: new findings during the past 5-years.J Cancer2018;9:2072-81 PMCID:PMC6010677

[24]

Botuyan MV,Ward IM.Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.Cell2006;127:1361-73 PMCID:PMC1804291

[25]

Wilson MD,Fradet-Turcotte A.The structural basis of modified nucleosome recognition by 53BP1.Nature2016;536:100-3

[26]

Greeson NT,Arida AR,Sanders SL.Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage.J Biol Chem2008;283:33168-74 PMCID:PMC2662251

[27]

Wu W,Fukuda T.Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage.Cancer Res2015;75:1311-21 PMCID:PMC5003120

[28]

Husmann D.Histone lysine methyltransferases in biology and disease.Nat Struct Mol Biol2019;26:880-9 PMCID:PMC6951022

[29]

Long Q,Gullerova M.Sweet melody or jazz? Transcription around DNA double-strand breaks.Front Mol Biosci2021;8:655786 PMCID:PMC8096065

[30]

Pessina F,Yin Y.Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors.Nat Cell Biol2019;21:1286-99 PMCID:PMC6859070

[31]

Pryde F,Robertson K.53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin.J Cell Sci2005;118:2043-55

[32]

Shanbhag NM,Balane-Bolivar C,Greenberg RA.ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks.Cell2010;141:970-81 PMCID:PMC2920610

[33]

Faucher D.Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway.PLoS Genet2010;6:e1001082 PMCID:PMC2928815

[34]

Moyal L,Gana-Weisz M.Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks.Mol Cell2011;41:529-42 PMCID:PMC3397146

[35]

Mosammaparast N,Laurent B.The histone demethylase LSD1/KDM1A promotes the DNA damage response.J Cell Biol2013;203:457-70 PMCID:PMC3824007

[36]

Li X,Yang S.Histone demethylase KDM5B is a key regulator of genome stability.Proc Natl Acad Sci U S A2014;111:7096-101 PMCID:PMC4024858

[37]

Gong F,Aguirrebengoa M,Miller KM.Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair.J Cell Biol2017;216:1959-74 PMCID:PMC5496618

[38]

Bayo J,Wang L,Das AK.Jumonji inhibitors overcome radioresistance in cancer through changes in H3K4 methylation at double-strand breaks.Cell Rep2018;25:1040-1050.e5 PMCID:PMC6245670

[39]

Bayley R,Moss RJ.H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ.Mol Cell2022;82:1924-1939.e10 PMCID:PMC9616806

[40]

Higgs MR,Reynolds JJ.Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2.Mol Cell2018;71:25-41.e6 PMCID:PMC6039718

[41]

Clouaire T,Lashgari A.Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures.Mol Cell2018;72:250-262.e6 PMCID:PMC6202423

[42]

Nakamura K,Kobayashi J.Regulation of homologous recombination by RNF20-dependent H2B ubiquitination.Mol Cell2011;41:515-28

[43]

Moynahan ME,Koller BH.Brca1 controls homology-directed DNA repair.Mol Cell1999;4:511-8

[44]

Farmer H,Lord CJ.Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.Nature2005;434:917-21

[45]

Murai J,Das BB.Trapping of PARP1 and PARP2 by clinical PARP inhibitors.Cancer Res2012;72:5588-99 PMCID:PMC3528345

[46]

Robson M,Senkus E.Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.N Engl J Med2017;377:523-33

[47]

Kyo S,Takakura M.Clinical landscape of PARP inhibitors in ovarian cancer: molecular mechanisms and clues to overcome resistance.Cancers (Basel)2022;14:2504 PMCID:PMC9139943

[48]

Setiaputra D.Shieldin - the protector of DNA ends.EMBO Rep2019;20:e47560 PMCID:PMC6501030

[49]

Bouwman P,Escandell JM.53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers.Nat Struct Mol Biol2010;17:688-95 PMCID:PMC2912507

[50]

Begum S,Bayley R.On your marks, get SET(D1A): the race to protect stalled replication forks.Mol Cell Oncol2018;5:e1511209 PMCID:PMC6276854

[51]

Thakar T.The emerging determinants of replication fork stability.Nucleic Acids Res2021;49:7224-38 PMCID:PMC8287955

[52]

Guillemette S,Peng M.Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4.Genes Dev2015;29:489-94 PMCID:PMC4358401

[53]

Ray Chaudhuri A,Ding X.Replication fork stability confers chemoresistance in BRCA-deficient cells.Nature2016;535:382-7 PMCID:PMC4959813

[54]

Rondinelli B,Yücel H.EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation.Nat Cell Biol2017;19:1371-8

[55]

Song Y,Wu J.Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives.J Hematol Oncol2016;9:49 PMCID:PMC4912745

[56]

Yang L,Jeong KW.Histone H3K4 methyltransferases as targets for drug-resistant cancers.Biology (Basel)2021;10:581 PMCID:PMC8301125

[57]

Zhu J,Liang X.A pan-cancer study of KMT2 family as therapeutic targets in cancer.J Oncol2022;2022:3982226 PMCID:PMC8766195

[58]

Fang Y,Yu B.LSD1/KDM1A inhibitors in clinical trials: advances and prospects.J Hematol Oncol2019;12:129 PMCID:PMC6894138

[59]

Harris WJ,Lynch JT.The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells.Cancer Cell2012;21:473-87

[60]

Kuroda S,Shirakawa Y.Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery.Cancer Res2010;70:9339-48

[61]

Vilar E,Stenzel SL.MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.Cancer Res2011;71:2632-42 PMCID:PMC3407272

[62]

Wang J,Fujimori H,Miki Y.Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors.Oncotarget2016;7:7701-14 PMCID:PMC4884948

[63]

Lin ZP,Whicker ME,Sartorelli AC.Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors.Mol Cancer Res2014;12:381-93 PMCID:PMC3962722

[64]

Sun C,Labrie M,Mills GB.Systems approach to rational combination therapy: PARP inhibitors.Biochem Soc Trans2020;48:1101-8 PMCID:PMC7329579

[65]

Zatreanu D,Alkhatib O.Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.Nat Commun2021;12:3636 PMCID:PMC8211653

[66]

McCabe N,Lord CJ.Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.Cancer Res2006;66:8109-15

[67]

Gogola E,de Ruiter JR.Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality.Cancer Cell2018;33:1078-1093.e12

[68]

Edwards SL,Lord CJ.Resistance to therapy caused by intragenic deletion in BRCA2.Nature2008;451:1111-5

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/