P-glycoprotein (ABCB1) - weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) : 1 -29.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) :1 -29. DOI: 10.20517/cdr.2022.59
review-article

P-glycoprotein (ABCB1) - weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport

Author information +
History +
PDF

Abstract

P-glycoprotein (ABCB1) is the first discovered mammalian member of the large family of ATP binding cassette (ABC) transporters. It facilitates the movement of compounds (called allocrites) across membranes, using the energy of ATP binding and hydrolysis. Here, we review the thermodynamics of allocrite binding and the kinetics of ATP hydrolysis by ABCB1. In combination with our previous molecular dynamics simulations, these data lead to a new model for allocrite transport by ABCB1. In contrast to previous models, we take into account that the transporter was evolutionarily optimized to operate within a membrane, which dictates the nature of interactions. Hydrophobic interactions drive lipid-water partitioning of allocrites, the transport process’s first step. Weak dipolar interactions (including hydrogen bonding, π-π stacking, and π-cation interactions) drive allocrite recognition, binding, and transport by ABCB1 within the membrane. Increasing the lateral membrane packing density reduces allocrite partitioning but enhances dipolar interactions between allocrites and ABCB1. Allocrite flopping (or reorientation of the polar part towards the extracellular aqueous phase) occurs after hydrolysis of one ATP molecule and opening of ABCB1 at the extracellular side. Rebinding of ATP re-closes the transporter at the extracellular side and expels the potentially remaining allocrite into the membrane. The high sensitivity of the steady-state ATP hydrolysis rate to the nature and number of dipolar interactions, as well as to the dielectric constant of the membrane, points to a flopping process, which occurs to a large extent at the membrane-transporter interface. The proposed unidirectional ABCB1 transport cycle, driven by weak dipolar interactions, is consistent with membrane biophysics.

Cite this article

Download citation ▾
Anna Seelig, Xiaochun Li-Blatter. P-glycoprotein (ABCB1) - weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport. Cancer Drug Resistance, 2023, 6(1): 1-29 DOI:10.20517/cdr.2022.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Juliano R.A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.Biochim Biophys Acta Biomembr1976;455:152-62

[2]

Davidson AL,Orelle C.Structure, function, and evolution of bacterial ATP-binding cassette systems.Microbiol Mol Biol Rev2008;72:317-64, table of contents PMCID:PMC2415747

[3]

Theodoulou FL.Plant ABC transporters.Biochim Biophys Acta Biomembr2000;1465:79-103

[4]

Gottesman MM.Overview: ABC transporters and human disease.J Bioenerg Biomembr2001;33:453-8

[5]

Holland IB.ABC transporters, mechanisms and biology: an overview.Essays Biochem2011;50:1-17

[6]

Thomas C,Beis K.Structural and functional diversity calls for a new classification of ABC transporters.FEBS Lett2020;594:3767-75 PMCID:PMC8386196

[7]

Dean M,Chimini G.The human ATP-binding cassette (ABC) transporter superfamily.J Lipid Res2001;42:1007-17

[8]

Jones PM.Is the emperor wearing shorts?.FEBS Lett2020;594:3790-8

[9]

Lewinson O,Seeger MA.Structures of ABC transporters: handle with care.FEBS Lett2020;594:3799-814 PMCID:PMC7756565

[10]

Senior AE,Urbatsch IL.The catalytic cycle of P-glycoprotein.FEBS Lett1995;377:285-9

[11]

Qu Q,Sharom FJ.Stoichiometry and affinity of nucleotide binding to P-glycoprotein during the catalytic cycle.Biochemistry2003;42:1170-7

[12]

Sharom FJ.Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1).Biochem Cell Biol2006;84:979-92

[13]

Bársony O,Türk D.A single active catalytic site is sufficient to promote transport in P-glycoprotein.Sci Rep2016;6:24810 PMCID:PMC4846820

[14]

Zwick M,Hellstern M.How phosphorylation and ATPase activity regulate anion flux though the cystic fibrosis transmembrane conductance regulator (CFTR).J Biol Chem2016;291:14483-98 PMCID:PMC4938172

[15]

Sauna ZE,Müller M,Ambudkar SV.The mechanism of action of multidrug-resistance-linked P-glycoprotein.J Bioenerg Biomembr2001;33:481-91

[16]

Rosenberg MF,Holzenburg A,Deeley RG.The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis.J Biol Chem2001;276:16076-82

[17]

Higgins CF.The ATP switch model for ABC transporters.Nat Struct Mol Biol2004;11:918-26

[18]

Dawson RJ.Structure of a bacterial multidrug ABC transporter.Nature2006;443:180-5

[19]

Aller SG,Ward A.Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.Science2009;323:1718-22 PMCID:PMC2720052

[20]

Li J,Aller SG.Refined structures of mouse P-glycoprotein.Protein Sci2014;23:34-46 PMCID:PMC3892297

[21]

Jardetzky O.Simple allosteric model for membrane pumps.Nature1966;211:969-70

[22]

Thomas C.Structural and mechanistic principles of ABC transporters.Annu Rev Biochem2020;89:605-36

[23]

Lusvarghi SRRGM.Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models.F1000Res2020;9:F1000 Faculty Rev-17 PMCID:PMC6961416

[24]

Raviv Y,Bruggemann EP,Gottesman MM.Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells.J Biol Chem1990;265:3975-80

[25]

Bruggemann E,Gottesman M.Characterization of the azidopine and vinblastine binding site of P-glycoprotein.J Biol Chem1992;267:21020-6

[26]

Homolya L,Germann U,Gottesman M.Fluorescent cellular indicators are extruded by the multidrug resistance protein.J Biol Chem1993;268:21493-6

[27]

Doige CA,Sharom FJ.The effects of lipids and detergents on ATPase-active P-glycoprotein.Biochim Biophys Acta Biomembr1993;1146:65-72

[28]

Beis I.The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates.Biochem J1975;152:23-32 PMCID:PMC1172435

[29]

Ataullakhanov FI.What determines the intracellular ATP concentration.Biosci Rep2002;22:501-11

[30]

Yaginuma H,Tabata KV.Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging.Sci Rep2014;4:6522 PMCID:PMC4185378

[31]

Sharom FJ,Qu Q.Exploring the structure and function of the P-glycoprotein multidrug transporter using fluorescence spectroscopic tools.Semin Cell Dev Biol2001;12:257-65

[32]

Beck A,Li-Blatter X,Locher K.Sav1866 from Staphylococcus aureus and P-glycoprotein: similarities and differences in ATPase activity assessed with detergents as allocrites.Biochemistry2013;52:3297-309

[33]

Xu Y,Bernèche S.Unidirectional transport mechanism in an ATP dependent exporter.ACS Cent Sci2017;3:250-8 PMCID:PMC5364450

[34]

Velamakanni S,Gutmann DA.Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus.Biochemistry2008;47:9300-8

[35]

Seelig A.P-Glycoprotein: one mechanism, many tasks and the consequences for pharmacotherapy of cancers.Front Oncol2020;10:576559 PMCID:PMC7649427

[36]

den Kamp JA. Lipid asymmetry in membranes.Annu Rev Biochem1979;48:47-71

[37]

Lorent JH,Ganesan L.Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.Nat Chem Biol2020;16:644-52 PMCID:PMC7246138

[38]

Seelig J.Lipid conformation in model membranes and biological membranes.Q Rev Biophys1980;13:19-61

[39]

Seelig A. Membrane structure. In: Encyclopedia of physical science and technology. Academic Press; 2002. p. 355-67.

[40]

Gally HU,Seelig J.Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers a deuterium magnetic resonance study.Hoppe Seylers Z Physiol Chem1976;357:1447-50

[41]

Ferreira TM,Ollila OH,Vaz WL.Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies.Phys Chem Chem Phys2013;15:1976-89

[42]

Jost PC,Capaldi RA.Evidence for boundary lipid in membranes.Proc Natl Acad Sci U S A1973;70:480-4 PMCID:PMC433287

[43]

Oldfield E,Glaser M.Deuterium nuclear magnetic resonance investigation of the effects of proteins and polypeptides on hydrocarbon chain order in model membrane systems.Proc Natl Acad Sci USA1978;75:4657-60 PMCID:PMC336175

[44]

Seelig A.Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes.Hoppe Seylers Z Physiol Chem1978;359:1747-56

[45]

Kang SY,Rajan S,Gabridge MG.Protein-lipid interactions in biological and model membrane systems. Deuterium NMR of Acholeplasma laidlawii B, Escherichia coli, and cytochrome oxidase systems containing specifically deuterated lipids.J Biol Chem1981;256:1155-9

[46]

Tamm LK.Lipid solvation of cytochrome c oxidase. Deuterium, nitrogen-14, and phosphorus-31 nuclear magnetic resonance studies on the phosphocholine head group and on cis-unsaturated fatty acyl chains.Biochemistry1983;22:1474-83

[47]

Seelig A.Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.Biochim Biophys Acta Biomembr1985;815:153-8

[48]

Schote U,Fahr A.Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetry.J Pharm Sci2002;91:856-67

[49]

Nyholm TK,Rijkers DT,Killian JA.Probing the lipid-protein interface using model transmembrane peptides with a covalently linked acyl chain.Biophys J2011;101:1959-67 PMCID:PMC3192971

[50]

Scherer PG.Structure and dynamics of the phosphatidylcholine and the phosphatidylethanolamine head group in L-M fibroblasts as studied by deuterium nuclear magnetic resonance.EMBO J1987;6:2915-22 PMCID:PMC553726

[51]

Heerklotz H,Seelig J.Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR.J Phys Chem B2004;108:4909-15

[52]

Wenk M,Seelig A.Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.Biophys J1997;72:1719-31 PMCID:PMC1184366

[53]

Meier M.Lipid and peptide dynamics in membranes upon insertion of n-alkyl-beta-D-glucopyranosides.Biophys J2010;98:1529-38 PMCID:PMC2856172

[54]

Veatch S,Gawrisch K.Liquid Domains in Vesicles Investigated by NMR and Fluorescence Microscopy.Biophys J2004;86:2910-22 PMCID:PMC1304159

[55]

Eggeling C,Medda R.Direct observation of the nanoscale dynamics of membrane lipids in a living cell.Nature2009;457:1159-62

[56]

Seelig A.The use of monolayers for simple and quantitative analysis of lipid-drug interactions exemplified with dibucaine and substance P.Cell Biol Int Rep1990;14:369-80

[57]

Taschner N. Partitioning of local anesthetic into membranes composed of POPC/cholesterol [Diploma Thesis]. Basel: University of Basel; 1992.

[58]

Seelig A.The role of size and charge for blood-brain barrier permeation of drugs and fatty acids.J Mol Neurosci2007;33:32-41

[59]

Gatlik-Landwojtowicz E,Seelig A.Quantification and characterization of P-glycoprotein-substrate interactions.Biochemistry2006;45:3020-32

[60]

Huang W.Theoretical calculation of the dielectric constant of a bilayer membrane.Biophys J1977;17:111-28 PMCID:PMC1473453

[61]

Kimura Y.Local dielectric properties around polar region of lipid bilayer membranes.J Membr Biol1985;85:225-31

[62]

Gottesman MM.Biochemistry of multidrug resistance mediated by the multidrug transporter.Annu Rev Biochem1993;62:385-427

[63]

Higgins CF.Is the multidrug transporter a flippase?.Trends Biochem Sci1992;17:18-21

[64]

Seelig A.A general pattern for substrate recognition by P-glycoprotein.Eur J Biochem1998;251:252-61

[65]

Seelig A.How does P-glycoprotein recognize its substrates?.Int J Clin Pharmacol Ther1998;36:50

[66]

Egido E,Li-Blatter X,Seelig A.Predicting activators and inhibitors of the breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) based on mechanistic considerations.Mol Pharm2015;12:4026-37

[67]

Xu Y,Li-Blatter X.Allocrite sensing and binding by the breast cancer resistance protein (ABCG2) and P-Glycoprotein (ABCB1).Biochemistry2015;54:6195-206

[68]

Nabekura T,Kato Y.Citrus auraptene induces drug efflux transporter P-glycoprotein expression in human intestinal cells.Food Funct2020;11:5017-23

[69]

Nervi P,Aänismaa P.P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.Biochim Biophys Acta2010;1798:515-25

[70]

Srinivasan V,Lill R.Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1.Science2014;343:1137-40

[71]

Nosol K,Irobalieva RN.Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1.Proc Natl Acad Sci USA2020;117:26245-53 PMCID:PMC7585025

[72]

Alam A,Broude E,Locher KP.Structural insight into substrate and inhibitor discrimination by human P-glycoprotein.Science2019;363:753-6 PMCID:PMC6800160

[73]

Urgaonkar S,Said AM.Discovery and characterization of potent dual P-Glycoprotein and CYP3A4 inhibitors: design, synthesis, Cryo-EM analysis, and biological evaluations.J Med Chem2022;65:191-216

[74]

Dawson RJ.Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP.FEBS Lett2007;581:935-8

[75]

Ward A,Yu J,Chang G.Flexibility in the ABC transporter MsbA: alternating access with a twist.Proc Natl Acad Sci USA2007;104:19005-10 PMCID:PMC2141898

[76]

Litman T,Skovsgaard T,Stein WD.ATPase activity of P-glycoprotein related to emergence of drug resistance in Ehrlich ascites tumor cell lines.Biochim Biophys Acta Mol Basis Dis1997;1361:147-58

[77]

Al-Shawi MK,Omote H.Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein.J Biol Chem2003;278:52629-40

[78]

Aänismaa P.P-Glycoprotein kinetics measured in plasma membrane vesicles and living cells.Biochemistry2007;46:3394-404

[79]

Li-Blatter X,Seelig A.P-glycoprotein-ATPase modulation: the molecular mechanisms.Biophys J2012;102:1383-93 PMCID:PMC3309411

[80]

Seelig J.Nonclassical hydrophobic effect in membrane binding equilibria.Biochemistry1991;30:9354-9

[81]

Li-Blatter X.Exploring the P-glycoprotein binding cavity with polyoxyethylene alkyl ethers.Biophys J2010;99:3589-98 PMCID:PMC2998628

[82]

Li-Blatter X,Seelig A.Detergents as intrinsic P-glycoprotein substrates and inhibitors.Biochim Biophys Acta2009;1788:2335-44

[83]

Romsicki Y.The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter.Biochemistry1999;38:6887-96

[84]

Clay AT.Lipid bilayer properties control membrane partitioning, binding, and transport of p-glycoprotein substrates.Biochemistry2013;52:343-54

[85]

Ueda K,Gottesman MM.Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine.Proc Natl Acad Sci USA1987;84:3004-8 PMCID:PMC304789

[86]

Broxterman HJ,Kuiper CM,Schuurhuis GJ.Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells.FASEB J1988;2:2278-82

[87]

Sarkadi B,Boucher R,Scarborough G.Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase.J Biol Chem1992;267:4854-8

[88]

Sarkadi B,Homolya L.Interaction of bioactive hydrophobic peptides with the human multidrug transporter.FASEB J1994;8:766-70

[89]

Doige CA,Sharom FJ.ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells.Biochim Biophys Acta Biomembr1992;1109:149-60

[90]

Al-Shawi MK.Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein.J Biol Chem1993;268:4197-206

[91]

Callaghan R,Ferry DR.The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface.Biochim Biophys Acta Biomembr1997;1328:109-24

[92]

Drori S,Assaraf YG.Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability.Eur J Biochem1995;228:1020-9

[93]

Meier M,Seelig A.Interaction of verapamil with lipid membranes and P-glycoprotein: connecting thermodynamics and membrane structure with functional activity.Biophys J2006;91:2943-55 PMCID:PMC1578493

[94]

Aanismaa P,Seelig A.P-glycoprotein senses its substrates and the lateral membrane packing density: consequences for the catalytic cycle.Biochemistry2008;47:10197-207

[95]

Kabanov A.An essential relationship between ATP depletion and chemosensitizing activity of Pluronic® block copolymers.J Control Release2003;91:75-83 PMCID:PMC3932490

[96]

Litman T,Skovsgaard T.Structure-activity relationships of P-glycoprotein interacting drugs: kinetic characterization of their effects on ATPase activity.Biochim Biophys Acta Mol Basis Dis1997;1361:159-68

[97]

Moncelli M,Guidelli R.The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes.Biophys J1994;66:1969-80 PMCID:PMC1275922

[98]

Kornberg RD.Inside-outside transitions of phospholipids in vesicle membranes.Biochemistry1971;10:1111-20

[99]

Romsicki Y.Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter.Biochemistry2001;40:6937-47

[100]

Chufan EE,Ambudkar SV.Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.Biochem Pharmacol2016;101:40-53 PMCID:PMC4753104

[101]

Sasitharan K,Bifsa F,Linton KJ.ABCB1 does not require the side-chain hydrogen-bond donors Gln347, Gln725, Gln990 to confer cellular resistance to the anticancer drug taxol.Int J Mol Sci2021;22:8561 PMCID:PMC8395328

[102]

Tombline G,Holt JJ.Stimulation of P-glycoprotein ATPase by analogues of tetramethylrosamine: coupling of drug binding at the “R” site to the ATP hydrolysis transition state.Biochemistry2006;45:8034-47

[103]

Dougherty DA.The cation-π interaction.Acc Chem Res2013;46:885-93 PMCID:PMC3957424

[104]

Ben-tal N,Topol IA,Burt SK.Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution.J Phys Chem B1997;101:450-7

[105]

Arbely E.Experimental measurement of the strength of a Cα-H···O bond in a lipid bilayer.J Am Chem Soc2004;126:5362-3

[106]

Joh NH,Faham S.Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins.Nature2008;453:1266-70 PMCID:PMC2734483

[107]

Perez C,Hummer G.Structure of outward-facing PglK and molecular dynamics of lipid-linked oligosaccharide recognition and translocation.Structure2019;27:669-678.e5

[108]

Ambudkar SV,Zhang J,Gottesman MM.Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis.Proc Natl Acad Sci USA1992;89:8472-6 PMCID:PMC49942

[109]

Urbatsch IL,Senior AE.Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein.Biochemistry1994;33:7069-76

[110]

Rothnie A,Soceneantu L.The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence.Eur Biophys J2001;30:430-42

[111]

Clouser AF,Atkins WM.Cholesterol asymmetrically modulates the conformational ensemble of the nucleotide-binding domains of P-glycoprotein in lipid nanodiscs.Biochemistry2021;60:85-94

[112]

Shukla S,Chufan EE.Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions.J Biol Chem2017;292:7066-76 PMCID:PMC5409473

[113]

Kimura Y,Kato H,Ueda K.Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol.Biochem J2007;401:597-605 PMCID:PMC1820799

[114]

Eckford PD.Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport.Biochemistry2008;47:13686-98

[115]

Gayet L,Barakat S.Control of P-glycoprotein activity by membrane cholesterol amounts and their relation to multidrug resistance in human CEM leukemia cells.Biochemistry2005;44:4499-509

[116]

Stein WD.Kinetics of the P-glycoprotein, the multidrug transporter.Exp Physiol1998;83:221-32

[117]

McConnell HM,Parce JW.The cytosensor microphysiometer: biological applications of silicon technology.Science1992;257:1906-12

[118]

Owicki JC,Kercso KM.Continuous monitoring of receptor-mediated changes in the metabolic rates of living cells.Proc Natl Acad Sci USA1990;87:4007-11 PMCID:PMC54033

[119]

Lin SJ,Andalis AA.Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.Nature2002;418:344-8

[120]

Landwojtowicz E,Seelig A.Real-time monitoring of P-glycoprotein activation in living cells.Biochemistry2002;41:8050-7

[121]

Mandel LJ.Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues.Am J Physiol1981;240:F357-71

[122]

Omote H.A novel electron paramagnetic resonance approach to determine the mechanism of drug transport by P-glycoprotein.J Biol Chem2002;277:45688-94

[123]

Eytan GD,Assaraf YG.Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis.J Biol Chem1996;271:3172-8

[124]

Ambudkar SV,Pashinsky I.Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein.J Biol Chem1997;272:21160-6

[125]

Wenk MR,Reszka R.Paclitaxel partitioning into lipid bilayers.J Pharm Sci1996;85:228-31

[126]

Shapiro AB.Stoichiometry of coupling of rhodamine 123 transport to ATP hydrolysis by P-glycoprotein.Eur J Biochem1998;254:189-93

[127]

Litman T,Skovsgaard T.Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity.Biochim Biophys Acta Mol Basis Dis1997;1361:169-76

[128]

Marzolini C,Li-Blatter X,Seelig A.The brain entry of HIV-1 protease inhibitors is facilitated when used in combination.Mol Pharm2013;10:2340-9

[129]

Seelig A,Lotz S.Binding of substance P agonists to lipid membranes and to the neurokinin-1 receptor.Biochemistry1996;35:4365-74

[130]

Huang SC.Neurokinin-1 receptor antagonists: a comprehensive patent survey.Expert Opin Ther Pat2010;20:1019-45

[131]

Matsson P,Norinder U,Artursson P.Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs.Pharm Res2009;26:1816-31

[132]

Gerebtzoff G.In silico prediction of blood-brain barrier permeation using the calculated molecular cross-sectional area as main parameter.J Chem Inf Model2006;46:2638-50

[133]

Spletstoser JT,Desino K.Single-site chemical modification at C10 of the baccatin III core of paclitaxel and Taxol C reduces P-glycoprotein interactions in bovine brain microvessel endothelial cells.Bioorg Med Chem Lett2006;16:495-8

[134]

Robey RW,Hall MD,Bates SE.Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat Rev Cancer2018;18:452-64 PMCID:PMC6622180

[135]

Tamaki A,Szakacs G,Bates SE.The controversial role of ABC transporters in clinical oncology.Essays Biochem2011;50:209-32 PMCID:PMC6944313

[136]

Omote H.Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism.Biophys J2006;90:4046-59 PMCID:PMC1459527

[137]

Cummins CL,Benet LZ.Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4.J Pharmacol Exp Ther2002;300:1036-45

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/