Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer

Sasha C. Main , David W. Cescon , Scott V. Bratman

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) : 727 -48.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) :727 -48. DOI: 10.20517/cdr.2022.37
review-article

Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer

Author information +
History +
PDF

Abstract

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response.

Keywords

Breast cancer / liquid biopsy / circulating tumor DNA / cell-free DNA / CDK4/6 inhibitors / resistance mechanisms / predictive biomarkers / circulating biomarkers

Cite this article

Download citation ▾
Sasha C. Main, David W. Cescon, Scott V. Bratman. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. Cancer Drug Resistance, 2022, 5(3): 727-48 DOI:10.20517/cdr.2022.37

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hart CD,Malorni L,Biganzoli L.Challenges in the management of advanced, ER-positive, HER2-negative breast cancer.Nat Rev Clin Oncol2015;12:541-52.

[2]

Pan H,Braybrooke J.20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years.N Engl J Med2017;377:1836-46.

[3]

Mehta RS,Albain KS.Overall survival with fulvestrant plus anastrozole in metastatic breast cancer.N Engl J Med2019;380:1226-34.

[4]

Burstein HJ,Barton DL.Endocrine treatment and targeted therapy for hormone receptor–positive, human epidermal growth factor receptor 2-negative metastatic breast cancer: ASCO Guideline update.J Clin Oncol2021;39:3959-77.

[5]

Finn RS,Rugo HS.Palbociclib and letrozole in advanced breast cancer.N Engl J Med2016;375:1925-36.

[6]

Turner NC,André F.Palbociclib in hormone-receptor-positive advanced breast cancer.N Engl J Med2015;373:209-19.

[7]

Sledge GW,Neven P.MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy.J Clin Oncol2017;35:2875-84.

[8]

Goetz MP,Campone M.MONARCH 3: abemaciclib as initial therapy for advanced breast cancer.J Clin Oncol2017;35:3638-46.

[9]

Hortobagyi GN,Burris HA.Ribociclib as first-line therapy for hr-positive, advanced breast cancer.N Engl J Med2016;375:1738-48.

[10]

Slamon DJ,Chia S.Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3.J Clin Oncol2018;36:2465-72.

[11]

Tripathy D,Colleoni M.Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial.Lancet Oncol2018;19:904-15.

[12]

Portman N,Carson E,Lim E.Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer.Endocr Relat Cancer2019;26:R15-30.

[13]

Cristofanilli M,Bondarenko I.Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phas.Lancet Oncol2016;17:425-39.

[14]

Im SA,Bardia A.Overall survival with ribociclib plus endocrine therapy in breast cancer.N Engl J Med2019;381:307-16.

[15]

Turner NC,Ro J.Overall survival with palbociclib and fulvestrant in advanced breast cancer.N Engl J Med2018;379:1926-36.

[16]

Slamon DJ,Chia S.Overall survival with ribociclib plus fulvestrant in advanced breast cancer.N Engl J Med2020;382:514-24.

[17]

Johnston S,Di Leo A.MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer.npj Breast Cancer2019;5:5

[18]

Schettini F,Giuliano M.Overall survival of CDK4/6-inhibitor-based treatments in clinically relevant subgroups of metastatic breast cancer: systematic review and meta-analysis.J Natl Cancer Inst2020;112:1089-97.

[19]

Rugo HS,Loibl S.Prognostic factors for overall survival in patients with hormone receptor-positive advanced breast cancer: analyses from PALOMA-3.Oncologist2021;26:e1339-46.

[20]

Rugo HS,Diéras V.Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up.Breast Cancer Res Treat2019;174:719.

[21]

Finn RS,Conklin D.PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro.Breast Cancer Res2009;11:R77.

[22]

Finn RS,Zhu Z.Biomarker analyses of response to cyclin-dependent kinase 4/6 inhibition and endocrine therapy in women with treatment-naïve metastatic breast cancer.Clin Cancer Res2020;26:110-21.

[23]

Asghar US,Roylance R.Systematic review of molecular biomarkers predictive of resistance to CDK4/6 inhibition in metastatic breast cancer.JCO Precis Oncol2022;6:e2100002

[24]

Heitzer E,Roberts CES.Current and future perspectives of liquid biopsies in genomics-driven oncology.Nat Rev Genet2019;20:71-88.

[25]

Malone ER,Sabatini PJB,Siu LL.Molecular profiling for precision cancer therapies.Genome Med2020;12:1-19.

[26]

Paik S,Tang G.A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.N Engl J Med2004;351:2817-26.

[27]

Paik S,Shak S.Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer.J Clin Oncol2006;24:3726-34.

[28]

van’t Veer LJ,Van de Vijver MJ.Gene expression profiling predicts clinical outcome of breast cancer.Nature2002;415:530-6.

[29]

Cardoso F,Bogaerts J.70-gene signature as an aid to treatment decisions in early-stage breast cancer.N Engl J Med2016;375:717-29.

[30]

Prat A,Adamo B.Clinical implications of the intrinsic molecular subtypes of breast cancer.The Breast2015;24:S26-35.

[31]

von Minckwitz G,Mano MS.Trastuzumab emtansine for residual invasive HER2-positive breast cancer.N Engl J Med2019;380:617-28.

[32]

Rugo HS,Ma C.Improving response to hormone therapy in breast cancer: new targets, new therapeutic options.Am Soc Clin Oncol Educ B2016;35:e40-54.

[33]

Bertoli C,De Bruin RAM.Control of cell cycle transcription during G1 and S phases.Nat Rev Mol Cell Biol2013;14:518-28.

[34]

Klein EA.Transcriptional regulation of the cyclin D1 gene at a glance.J Cell Sci2008;121:3853-7.

[35]

Anders L,Hydbring P.A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells.Cancer Cell2011;20:620-34.

[36]

Sabbah M,Mester J.Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element.Proc Natl Acad Sci USA1999;96:11217-22.

[37]

Thu K,Mak T.Targeting the cell cycle in breast cancer: towards the next phase.Cell Cycle2018;17:1871-85.

[38]

Álvarez-Fernández M.Mechanisms of sensitivity and resistance to CDK4/6 inhibition.Cancer Cell2020;37:514-29.

[39]

O’Leary B,Liu Y.The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial.Cancer Discov2018;8:1390-403.

[40]

Yang C,Bhatt T.Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence.Oncogene2017;36:2255-64.

[41]

Formisano L,Servetto A.Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.Nat Commun2019;10:1373.

[42]

Herrera-Abreu MT,Asghar U.Early Adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer.Cancer Res2016;76:2301-13.

[43]

Li Z,Li Q.Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway.Cancer Cell2018;34:893-905.e8.

[44]

Condorelli R,O’Shaughnessy J.Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.Ann Oncol2018;29:640-5.

[45]

Raimondi L,Pietranera M.Assessment of resistance mechanisms and clinical implications in patients with KRAS mutated-metastatic breast cancer and resistance to CDK4/6 inhibitors.Cancers (Basel)2021;13:1928.

[46]

Wander SA,Gong X.The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer.Cancer Discov2020;10:1174-93.

[47]

Kennecke H,Woods R.Metastatic behavior of breast cancer subtypes.J Clin Oncol2010;28:3271-7.

[48]

Gerratana L,Bonotto M.Pattern of metastasis and outcome in patients with breast cancer.Clin Exp Metastasis2015;32:125-33.

[49]

Wan JCM,Garcia-Corbacho J.Liquid biopsies come of age: towards implementation of circulating tumour DNA.Nat Rev Cancer2017;17:223-38.

[50]

Cescon DW,Chan SM.Circulating tumor DNA and liquid biopsy in oncology.Nat Cancer2020;1:276-90.

[51]

Bettegowda C,Leary RJ.Detection of circulating tumor DNA in early- and late-stage human malignancies.Sci Transl Med2014;6:224ra24.

[52]

Nassiri F,Feng S.Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes.Nat Med2020;26:1044-7.

[53]

Andersson D,Ståhlberg A.Liquid biopsy analysis in cancer diagnostics.Mol Aspects Med2020;72:100839.

[54]

Ignatiadis M,Jeffrey SS.Liquid biopsy enters the clinic - implementation issues and future challenges.Nat Rev Clin Oncol2021;18:297-312.

[55]

Migliaccio I,Galardi F.Circulating biomarkers of CDK4/6 inhibitors response in hormone receptor positive and HER2 negative breast cancer.Cancers (Basel)2021;13:2640.

[56]

González-Conde M,López-López R.Liquid biopsy: a new tool for overcoming CDKi resistance mechanisms in luminal metastatic breast cancer.J Pers Med2021;11:407.

[57]

Sun K,Chan KCA.Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments.Proc Natl Acad Sci2015;112:E5503-12.

[58]

Snyder MW,Hill AJ,Shendure J.Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin.Cell2016;164:57-68.

[59]

Moss J,Neiman D.Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease.Nat Commun2018;9:1-12.

[60]

Rostami A,Yu CW,Waldron JN.Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics.Cell Rep2020;31:107830.

[61]

Jahr S,Englisch S.DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells.Cancer Res2001;61:1659-65.

[62]

Stroun M,Lederrey C,Anker P.About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release.Clin Chim Acta2001;313:139-42.

[63]

Abbosh C,Wilson GA.Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.Nature2017;545:446-51.

[64]

Newman AM,Klass DM.Integrated digital error suppression for improved detection of circulating tumor DNA.Nat Biotechnol2016;34:547-55.

[65]

Kurtz DM,Co Ting Keh L.Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA.Nat Biotechnol2021;39:1537-47.

[66]

Yao W,Nan X.Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study.Gene2016;590:142-8.

[67]

Lo YM,Leung TN,Chang AM.Rapid clearance of fetal DNA from maternal plasma.Am J Hum Genet1999;64:218.

[68]

To EWH,Leung SF.Rapid clearance of plasma epstein-barr virus DNA after surgical treatment of nasopharyngeal carcinoma.Clin Cancer Res2003;9:3254-9.

[69]

Diehl F,Choti MA.Circulating mutant DNA to assess tumor dynamics.Nat Med2008;14:985-90.

[70]

Li M,Dressman D,Kinzler KW.BEAMing up for detection and quantification of rare sequence variants.Nat Methods2006;3:95-7.

[71]

Postel M,Laurent-Puig P,Wang-Renault SF.Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective.Expert Rev Mol Diagn2018;18:7-17.

[72]

Newman AM., To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.Nat Med2014;20:548-54.

[73]

McDonald BR,Sammut SJ.Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer.Sci Transl Med2019;11:1-14.

[74]

Forshew T,Parkinson C.Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA.Sci Transl Med2012;4:136ra68.

[75]

André F,Rubovszky G.Alpelisib for PIK3CA -mutated, hormone receptor-positive advanced breast cancer.N Engl J Med2019;380:1929-40.

[76]

US Food and Drug Administration. therascreen PIK3CA RGQ PCR kit FDA . Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf19/P190004A.pdf2019 [Last accessed on 1 Jun 2021]

[77]

Razavi P,Shah PD.Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors.Nat Cancer2020;1:382-93.

[78]

O’Leary B,Huang X.Circulating tumor DNA markers for early progression on fulvestrant with or without palbociclib in ER+ advanced breast cancer.JNCI J Natl Cancer Inst2021;113:309-17.

[79]

Bertucci F,Patsouris A.Genomic characterization of metastatic breast cancers.Nature2019;569:560-4.

[80]

Fribbens C,Kilburn L.Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer.J Clin Oncol2016;34:2961-8.

[81]

Tolaney SM,Neven P.Clinical significance of PIK3CA and ESR1 mutations in circulating tumor DNA: analysis from the MONARCH 2 study of abemaciclib plus fulvestrant.Clin Cancer Res2022;28:1500-6.

[82]

Del Re M,Lorenzini G.PI3K mutations detected in liquid biopsy are associated to reduced sensitivity to CDK4/6 inhibitors in metastatic breast cancer patients.Pharmacol Res2021;163:105241.

[83]

Bardia A,Solovieff N.Genomic profiling of premenopausal HR+ and HER2- metastatic breast cancer by circulating tumor DNA and association of genetic alterations with therapeutic response to endocrine therapy and ribociclib.JCO Precis Oncol2021;5:PO.20.00445

[84]

Sanz-Garcia E,Bratman S V.Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: current research, opportunities, and challenges.Sci Adv2022;8:1-15.

[85]

O’Leary B,Morden JP.Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer.Nat Commun2018;9:1-10.

[86]

Jeannot E,Michel M.A single droplet digital PCR for ESR1 activating mutations detection in plasma.Oncogene2020;39:2987-95.

[87]

Darrigues L,Bernard-Tessier A.Circulating tumor DNA as a dynamic biomarker of response to palbociclib and fulvestrant in metastatic breast cancer patients.Breast Cancer Res2021;23:1-10.

[88]

Martínez-Sáez O,Brasó-Maristany F.Circulating tumor DNA dynamics in advanced breast cancer treated with CDK4/6 inhibition and endocrine therapy.npj Breast Cancer2021;7:8.

[89]

Dandachi N,Graf R.Longitudinal tumor fraction trajectories predict risk of progression in metastatic HR + breast cancer patients undergoing CDK4/6 treatment.Mol Oncol2021;15:2390-400.

[90]

Henriksen TV,Frydendahl A.Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences.Clin Cancer Res2022;28:507-17.

[91]

Coombes RC,Salari R.Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence.Clin Cancer Res2019;25:4255-63.

[92]

Lo YMD,Jiang P.Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies.Science2021;372:eaaw3616

[93]

Im YR,Diaz LA.Next-generation liquid biopsies: embracing data science in oncology.Trends in Cancer2021;7:283-92.

[94]

Ma CX,Luo J.NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer.Clin Cancer Res2017;23:4055-65.

[95]

Arnedos M,Cheaib B.Modulation of Rb phosphorylation and antiproliferative response to palbociclib: the preoperative-palbociclib (POP) randomized clinical trial.Ann Oncol2018;29:1755-62.

[96]

Turner NC,Zhu Z.Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer.J Clin Oncol2019;37:1169-78.

[97]

Guarducci C,Benelli M.Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer.npj Breast Cancer2018;4:38.

[98]

Hurvitz SA,Press MF.Potent cell-cycle inhibition and upregulation of immune response with abemaciclib and anastrozole in neoMONARCH, Phase II neoadjuvant study in HR+/HER2- breast cancer.Clin Cancer Res2020;26:566-80.

[99]

Evers DL,Kim YH,O’Leary TJ.Paraffin embedding contributes to RNA aggregation, reduced RNA yield, and low RNA quality.J Mol Diagnostics2011;13:687-94.

[100]

Watt AC,DeCristo MJ.CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity.Nat Cancer2021;2:34-48.

[101]

Robertson KD.DNA methylation and human disease.Nat Rev Genet2005;6:597-610.

[102]

Nuzzo PV,Korthauer K.Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes.Nat Med2020;26:1041-3.

[103]

Liu MC,Klein EA.Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA.Ann Oncol2020;31:745-59.

[104]

Shen SY,Fehringer G.Sensitive tumour detection and classification using plasma cell-free DNA methylomes.Nature2018;563:579-83.

[105]

Gerratana L,Franzoni A.Plasma-based longitudinal evaluation of ESR1 epigenetic status in hormone receptor-positive HER2-negative metastatic breast cancer.Front Oncol2020;10:1-12.

[106]

Ørntoft MB, Jensen SØ, Hansen TB, Bramsen JB, Andersen CL. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA.Epigenetics2017;12:626-36.

[107]

Shen SY,Bratman S V., De Carvalho DD. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA.Nat Protoc2019;14:2749-80.

[108]

Huang J,Wang L.Cell-free DNA methylome profiling by MBD-seq with ultra-low input.Epigenetics2022;17:239-52.

[109]

Branco MR,Reik W.Uncovering the role of 5-hydroxymethylcytosine in the epigenome.Nat Rev Genet2012;13:7-13.

[110]

Song CX,Ma L.5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages.Cell Res2017;27:1231-42.

[111]

Li W,Lu X.5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers.Cell Res2017;27:1243-57.

[112]

Underhill HR,Hellwig S.Fragment length of circulating tumor DNA. Kwiatkowski DJ, ed.PLoS Genet2016;12:e1006162.

[113]

Mouliere F,Piskorz AM.Enhanced detection of circulating tumor DNA by fragment size analysis.Sci Transl Med2018;10:1-14.

[114]

Hellwig S,Gligorich KM.Automated size selection for short cell-free DNA fragments enriches for circulating tumor DNA and improves error correction during next generation sequencing.PLoS One2018;13:1-24.

[115]

Liu X,Ji Y.Enrichment of short mutant cell-free DNA fragments enhanced detection of pancreatic cancer.EBioMedicine2019;41:345-56.

[116]

Underhill HR.Leveraging the fragment length of circulating tumour DNA to improve molecular profiling of solid tumour malignancies with next-generation sequencing: a pathway to advanced non-invasive diagnostics in precision oncology?.Mol Diagn Ther2021;25:389-408.

[117]

Heitzer E.One size does not fit all: size-based plasma DNA diagnostics.Sci Transl Med2018;10:1-4.

[118]

Ulz P,Auer M.Inferring expressed genes by whole-genome sequencing of plasma DNA.Nat Genet2016;48:1273-8.

[119]

Zhu G,Ho D.Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden.Nat Commun2021;12:2229.

[120]

Cristiano S,Phallen J.Genome-wide cell-free DNA fragmentation in patients with cancer.Nature2019;570:385-9.

[121]

Ivanov M,Butler T,Mileyko V.Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation.BMC Genomics2015;16:1-12.

[122]

Ulz P,Zhou Q.Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection.Nat Commun2019;10:4666.

[123]

Peneder P,Surdez D.Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden.Nat Commun2021;12:3230.

[124]

Mathios D,Cristiano S.Detection and characterization of lung cancer using cell-free DNA fragmentomes.Nat Commun2021;12:5060.

[125]

Chandrananda D,Bahlo M.High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.BMC Med Genomics2015;8:29.

[126]

Jin C,Zheng W.Characterization of fragment sizes, copy number aberrations and 4-mer end motifs in cell-free DNA of hepatocellular carcinoma for enhanced liquid biopsy-based cancer detection.Mol Oncol2021;15:2377-89.

[127]

Serpas L,Jiang P.Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA.Proc Natl Acad Sci2019;116:641-9.

[128]

Jiang P,Peng W.Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation.Cancer Discov2020;10:664-73.

[129]

Zhitnyuk Y V,Alferov AA.Deep cfDNA fragment end profiling enables cancer detection.Mol Cancer2022;21:26.

[130]

Jiang P,Ding SC.Detection and characterization of jagged ends of double-stranded DNA in plasma.Genome Res2020;30:1144-53.

[131]

Sun K,Cheng SH.Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin.Genome Res2019;29:418-27.

[132]

Jiang P,Tong YK.Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma.Proc Natl Acad Sci USA2018;115:E10925-33.

[133]

Murtaza M.Nucleosome mapping in plasma DNA predicts cancer gene expression.Nat Genet2016;48:1105-6.

[134]

Bannister AJ.Regulation of chromatin by histone modifications.Cell Res2011;21:381-95.

[135]

Deligezer U,Erten N.Sequence-specific histone methylation is detectable on circulating nucleosomes in plasma.Clin Chem2008;54:1125-31.

[136]

Deligezer U,Darendeliler E.Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease.Clin Chim Acta2010;411:1452-6.

[137]

Sadeh R,Fialkoff G.ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin.Nat Biotechnol2021;39:586-98.

[138]

Lasseter K,Hamieh L.Plasma cell-free DNA variant analysis compared with methylated DNA analysis in renal cell carcinoma.Genet Med2020;22:1366-73.

[139]

Hu X,Shi H.Integrated 5-hydroxymethylcytosine and fragmentation signatures as enhanced biomarkers in lung cancer.Clin Epigenetics2022;14:15.

[140]

Cao F,Hu X.Integrated epigenetic biomarkers in circulating cell-free DNA as a robust classifier for pancreatic cancer.Clin Epigenetics2020;12:1-14.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/