Therapeutics to harness the immune microenvironment in multiple myeloma

James J. Ignatz-Hoover , James J. Driscoll

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) : 647 -61.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) :647 -61. DOI: 10.20517/cdr.2022.23
review-article

Therapeutics to harness the immune microenvironment in multiple myeloma

Author information +
History +
PDF

Abstract

Multiple myeloma (MM) remains an incurable, genetically heterogeneous disease characterized by the uncontrolled proliferation of transformed plasma cells nurtured within a permissive bone marrow (BM) microenvironment. Current therapies leverage the unique biology of MM cells and target the immune microenvironment that drives tumor growth and facilitates immune evasion. Proteasome inhibitors and immunomodulatory drugs were initially introduced to complement and have now supplanted cytotoxic chemotherapy as frontline anti-myeloma agents. Recently, monoclonal antibodies, bispecific antibodies, and chimeric antigen receptor T cells were developed to revamp the immune system to overcome immune suppression and improve patient responses. While current MM therapies have markedly extended patient survival, acquired drug resistance inevitably emerges and drives disease progression. The logical progression for the next generation of MM therapies would be to design and validate agents that prevent and/or overcome acquired resistance to immunotherapies. The complex BM microenvironment promotes resistance to both current anti-myeloma agents and emerging immunotherapies. Myeloma cells are intertwined with a complex BM immune microenvironment that contributes to the development of adaptive drug resistance. Here, we describe recently FDA-approved and investigational anti-myeloma agents that directly or indirectly target the BM microenvironment to prevent or overcome drug resistance. Synergistic effects of anti-myeloma agents may foster the development of rationally-designed drug cocktails that prevent BM-mediated resistance to immunotherapies.

Keywords

Multiple myeloma / drug resistance / proteasome inhibitors / immunomodulators / immunotherapeutics / adaptive resistance / bone marrow microenvironment

Cite this article

Download citation ▾
James J. Ignatz-Hoover, James J. Driscoll. Therapeutics to harness the immune microenvironment in multiple myeloma. Cancer Drug Resistance, 2022, 5(3): 647-61 DOI:10.20517/cdr.2022.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Palumbo A.Multiple myeloma.N Engl J Med2011;364:1046-60

[2]

Munshi NC,Rawstron AC.Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis.JAMA Oncol2017;3:28-35 PMCID:PMC5943640

[3]

Available from: https://seer.cancer.gov/statfacts/html/mulmy.html [Last accessed on 17 May 2022]

[4]

Available from: https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html [Last accessed on 17 May 2022]

[5]

Cowan AJ,Barac A.Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016.JAMA Oncol2018;4:1221-7 PMCID:PMC6143021

[6]

Ludwig H,Meckl A,Durie B.Multiple myeloma incidence and mortality around the globe; interrelations between health access and quality, economic resources, and patient empowerment.Oncologist2020;25:e1406-13 PMCID:PMC7485361

[7]

Went M,Försti A.PRACTICAL consortiumIdentification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma.Nat Commun2018;9:3707 PMCID:PMC6137048

[8]

Vachon CM,Therneau TM.Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance.Blood2009;114:785-90 PMCID:PMC2716020

[9]

de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma.The Lancet2021;397:410-27

[10]

Landgren O,Pfeiffer RM.Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study.Blood2009;113:5412-7 PMCID:PMC2689042

[11]

Kyle RA,Rajkumar SV.Prevalence of monoclonal gammopathy of undetermined significance.N Engl J Med2006;354:1362-9

[12]

Rajkumar SV.Multiple myeloma: 2020 update on diagnosis, risk-stratification and management.Am J Hematol2020;95:548-67

[13]

Cowan AJ,Kwok M.Diagnosis and management of multiple myeloma: a review.JAMA2022;327:464-77

[14]

Kawano Y,Manier S.Targeting the bone marrow microenvironment in multiple myeloma.Immunol Rev2015;263:160-72

[15]

Leone P,Malerba E.Actors on the scene: immune cells in the myeloma niche.Front Oncol2020;10:599098 PMCID:PMC7658648

[16]

Podar K,Anderson KC.Bone marrow microenvironment and the identification of new targets for myeloma therapy.Leukemia2009;23:10-24 PMCID:PMC3418600

[17]

Moscvin M,Bianchi G.Overcoming drug resistance by targeting protein homeostasis in multiple myeloma.Cancer Drug Resist2021;4:1028-46 PMCID:PMC8903187

[18]

Ding L.Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches.Nature2013;495:231-5 PMCID:PMC3600153

[19]

Son B,Youn H,Kim W.The role of tumor microenvironment in therapeutic resistance.Oncotarget2017;8:3933-45 PMCID:PMC5354804

[20]

Swamydas M,Ignatz-Hoover JJ,Driscoll JJ.Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma.J Hematol Oncol2022;15:17 PMCID:PMC8848665

[21]

Chen Z,Zilberberg J.Pumpless platform for high-throughput dynamic multicellular culture and chemosensitivity evaluation.Lab Chip2019;19:254-61 PMCID:PMC6333476

[22]

Uhl C,Siegel DS,Zilberberg J.Natural killer cells activity against multiple myeloma cells is modulated by osteoblast-induced IL-6 and IL-10 production.Heliyon2022;8:e09167

[23]

Madel MB,Wakkach A.Immune function and diversity of osteoclasts in normal and pathological conditions.Front Immunol2019;10:1408 PMCID:PMC6594198

[24]

Farrell ML.Soluble and cell-cell-mediated drivers of proteasome inhibitor resistance in multiple myeloma.Front Endocrinol (Lausanne)2018;9:218 PMCID:PMC5938346

[25]

Markovina S,O’Connor SL.Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma cells.Mol Cancer2010;9:176 PMCID:PMC3095250

[26]

Moloudizargari M,Asghari MH,Neagoe IB.The emerging role of exosomes in multiple myeloma.Blood Rev2019;38:100595

[27]

Roccaro AM,Maiso P.BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression.J Clin Invest2013;123:1542-55 PMCID:PMC3613927

[28]

Wang J,Hernot S.Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells.Blood2014;124:555-66

[29]

Chen T,Bianchi G.Exosomes in the pathogenesis and treatment of multiple myeloma in the context of the bone marrow microenvironment.Front Oncol2020;10:608815 PMCID:PMC7674795

[30]

Okada T.Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements.Int J Cancer1995;63:823-30

[31]

Bunting MD,Requesens M.Extracellular matrix proteins regulate NK cell function in peripheral tissues.Sci Adv2022;8:eabk3327 PMCID:PMC8926340

[32]

Terpos E,Gavriatopoulou M.Pathogenesis of bone disease in multiple myeloma: from bench to bedside.Blood Cancer J2018;8:7 PMCID:PMC5802524

[33]

Uchiyama H,Mohrbacher A,Anderson K.Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion.Blood1993;82:3712-20

[34]

Damiano JS,Hazlehurst LA,Dalton WS.Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines.Blood1999;93:1658-67 PMCID:PMC5550098

[35]

Landowski TH,Agrawal D.Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells.Oncogene2003;22:2417-21

[36]

Wang X,Ju S,Wang H.Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation.Leuk Lymphoma2011;52:1991-8

[37]

Wallace SR,Lunetta KL,Masellis AM.Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients.Cancer2001;91:1219-30

[38]

Feng Y,Mike P.Bone marrow stromal cells from myeloma patients support the growth of myeloma stem cells.Stem Cells Dev2010;19:1289-96

[39]

Ria R.Bone marrow stromal cells-induced drug resistance in multiple myeloma.Int J Mol Sci2020;21:613 PMCID:PMC7013615

[40]

Schlafer D,Panjic EH.Safety of proteasome inhibitors for treatment of multiple myeloma.Expert Opin Drug Saf2017;16:167-83

[41]

Kim HY,Ryu H.Bortezomib inhibits the survival and proliferation of bone marrow stromal cells.Blood Res2015;50:87-96 PMCID:PMC4486164

[42]

Gupta D,Shima Y.Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications.Leukemia2001;15:1950-61

[43]

Roccaro AM,Raje N.Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells.Cancer Res2006;66:184-91

[44]

Holstein SA.Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience.Drugs2017;77:505-20 PMCID:PMC5705939

[45]

Quach H,Stewart AK.Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma.Leukemia2010;24:22-32 PMCID:PMC3922408

[46]

Bila J,Guenova M.Bone marrow microenvironment interplay and current clinical practice in multiple myeloma: a review of the balkan myeloma study group.J Clin Med2021;10:3940 PMCID:PMC8432054

[47]

Stakiw J,Goubran H.A closer look at the bone marrow microenvironment in multiple myeloma.Tumor Microenviron2018;1:1

[48]

Breitkreutz I,Vallet S.Erratum: lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma.Leukemia2008;22:1973-1973

[49]

Bolzoni M,Bonomini S.Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.Exp Hematol2013;41:387-97.e1

[50]

Corral LG,Muller GW.Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha.J Immunol1999;163:380-6

[51]

LeBlanc R,Catley LP.Immunomodulatory drug costimulates T cells via the B7-CD28 pathway.Blood2004;103:1787-90

[52]

Henry JY,Meyer B,Dalgleish AG.Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs® immunomodulatory compounds lenalidomide and pomalidomide.Immunology2013;139:377-85 PMCID:PMC3701184

[53]

Chang DH,Klimek V.Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications.Blood2006;108:618-21 PMCID:PMC1895497

[54]

Zhu D,Fleming YW.Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation.Cancer Immunol Immunother2008;57:1849-59

[55]

Galustian C,Labarthe MC.The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells.Cancer Immunol Immunother2009;58:1033-45

[56]

Görgün G,Soydan E.Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma.Blood2010;116:3227-37 PMCID:PMC2995353

[57]

Tamura H,Yamashita T.Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma.Leukemia2013;27:464-72

[58]

Liu J,Wolowiec D.Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway.Blood2007;110:296-304

[59]

Suzuki K,Yano S.Treatment strategies considering micro-environment and clonal evolution in multiple myeloma.Cancers (Basel)2021;13:215 PMCID:PMC7827913

[60]

Lokhorst HM,Laubach JP.Targeting CD38 with daratumumab monotherapy in multiple myeloma.N Engl J Med2015;373:1207-19

[61]

Chari A,Mateos MV.Daratumumab plus carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma.Blood2019;134:421-31 PMCID:PMC6676132

[62]

Dimopoulos MA,Nahi H.POLLUX InvestigatorsDaratumumab, lenalidomide, and dexamethasone for multiple myeloma.N Engl J Med2016;375:1319-31

[63]

Palumbo A,Weisel K.CASTOR InvestigatorsDaratumumab, bortezomib, and dexamethasone for multiple myeloma.N Engl J Med2016;375:754-66

[64]

Voorhees PM,Laubach J.Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial.Blood2020;136:936-45 PMCID:PMC7441167

[65]

Krejcik J,Nijhof IS.Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.Blood2016;128:384-94 PMCID:PMC4957162

[66]

Ghose J,Terrazas C.Daratumumab induces CD38 internalization and impairs myeloma cell adhesion.Oncoimmunology2018;7:e1486948 PMCID:PMC6169590

[67]

Trudel S,Touzeau C.Update on elotuzumab for the treatment of relapsed/refractory multiple myeloma: patients’ selection and perspective.Onco Targets Ther2019;12:5813-22 PMCID:PMC6645600

[68]

Ackley J,Ghoshal D,Lonial S.Keeping myeloma in check: the past, present and future of immunotherapy in multiple myeloma.Cancers (Basel)2021;13:4787 PMCID:PMC8507631

[69]

Hsi ED,Balasa B.CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma.Clin Cancer Res2008;14:2775-84 PMCID:PMC4433038

[70]

Awwad MHS,Bruns H.Selective elimination of immunosuppressive T cells in patients with multiple myeloma.Leukemia2021;35:2602-15 PMCID:PMC8410603

[71]

Dhillon S.Isatuximab: first approval.Drugs2020;80:905-12

[72]

Zhu C,Wang A.Isatuximab acts through Fc-dependent, independent, and direct pathways to kill multiple myeloma cells.Front Immunol2020;11:1771 PMCID:PMC7457083

[73]

Moreno L,Zabaleta A.The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma.Clin Cancer Res2019;25:3176-87

[74]

Tai YT.Targeting CD38 alleviates tumor-induced immunosuppression.Oncotarget2017;8:112166-7 PMCID:PMC5762499

[75]

Deckert J,Bartle LM.SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies.Clin Cancer Res2014;20:4574-83

[76]

Martin TG,Strickland SA.A phase I trial of SAR650984, a CD38 monoclonal antibody, in relapsed or refractory multiple myeloma.J Clin Oncol2014;32:Suppl:8532.

[77]

Dimopoulos MA,Anttila P.Results from a phase II study of isatuximab as a single agent and in combination with dexamethasone in patients with relapsed/refractory multiple myeloma.Blood2018;132:155-155

[78]

Mikhael J,Hulin C.A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab.Blood Cancer J2021;11:89 PMCID:PMC8116334

[79]

Becnel MR,Thomas SK.Descriptive analysis of isatuximab use following prior daratumumab in patients with relapsed/refractory multiple myeloma.Blood2020;136:20-1

[80]

Mikhael J,Hulin C.A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab.Blood Cancer J2021;11:89 PMCID:PMC8116334

[81]

Moreau P,Mikhael J.Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial.The Lancet2021;397:2361-71

[82]

Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selinexor-refractory-or-relapsed-multiple-myeloma [Last accessed on 17 May 2022]

[83]

Grosicki S,Spicka I.Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial.The Lancet2020;396:1563-73

[84]

Deng M,Xu-Monette ZY.XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53.J Hematol Oncol2020;13:148 PMCID:PMC7641823

[85]

Fisher JG,Doyle AD.Selinexor enhances NK cell activation against malignant B cells via downregulation of HLA-E.Front Oncol2021;11:785635 PMCID:PMC8672299

[86]

Zhong Y,Dubovsky JA.Selinexor suppresses downstream effectors of B-cell activation, proliferation and migration in chronic lymphocytic leukemia cells.Leukemia2014;28:1158-63 PMCID:PMC4013224

[87]

Muz B,de la Puente P,Azab AK.Selinexor overcomes hypoxia-induced drug resistance in multiple myeloma.Transl Oncol2017;10:632-40 PMCID:PMC5496204

[88]

Cheng ML.Effects of RANKL-targeted therapy in immunity and cancer.Front Oncol2014;3:329 PMCID:PMC3882875

[89]

Terpos E,Croucher P.Denosumab compared with zoledronic acid on PFS in multiple myeloma: exploratory results of an international phase 3 study.Blood Adv2021;5:725-36 PMCID:PMC7876889

[90]

Raje N,Willenbacher W.Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study.The Lancet Oncology2018;19:370-81

[91]

Mhaskar R.Bisphosphonates for patients diagnosed with multiple myeloma.JAMA2018;320:1483-4

[92]

Berbari HE.Initial therapeutic approaches to patients with multiple myeloma.Adv Ther2021;38:3694-711

[93]

Pozzi S.The role of bisphosphonates in multiple myeloma: mechanisms, side effects, and the future.Oncologist2011;16:651-62 PMCID:PMC3228190

[94]

Nussbaumer O,Gander H.DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes.Blood2011;118:2743-51

[95]

Carpenter RO,Pittaluga S.B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma.Clin Cancer Res2013;19:2048-60 PMCID:PMC3630268

[96]

Brudno JN,Hartman SD.T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma.J Clin Oncol2018;36:2267-80 PMCID:PMC6067798

[97]

Shah N,Scott E,Usmani SZ.B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches.Leukemia2020;34:985-1005 PMCID:PMC7214244

[98]

Rodriguez-Garcia A,Noguera-Ortega E,Guedan S.CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape.Front Immunol2020;11:1109 PMCID:PMC7311654

[99]

Munshi NC,Shah N.Idecabtagene vicleucel in relapsed and refractory multiple myeloma.N Engl J Med2021;384:705-16

[100]

Berdeja JG,Usmani SZ.Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. The Lancet 2021;398:314-24.

[101]

Rafiq S,Brentjens RJ.Engineering strategies to overcome the current roadblocks in CAR T cell therapy.Nat Rev Clin Oncol2020;17:147-67 PMCID:PMC7223338

[102]

Sterner RC.CAR-T cell therapy: current limitations and potential strategies.Blood Cancer J2021;11:69 PMCID:PMC8024391

[103]

Franssen LE,Lokhorst HM.Immunotherapy in myeloma: how far have we come?.Ther Adv Hematol2019;10:2040620718822660 PMCID:PMC6348514

[104]

Holthof LC.Challenges for immunotherapy in multiple myeloma: bone marrow microenvironment-mediated immune suppression and immune resistance.Cancers (Basel)2020;12:988 PMCID:PMC7226482

[105]

Eikenes L,Brekken C.Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts.Cancer Res2004;64:4768-73

[106]

Hingorani SR,Beck JT.Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer.Clin Cancer Res2016;22:2848-54 PMCID:PMC7787348

[107]

Hingorani SR,Bullock AJ.HALO 202: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma.J Clin Oncol2018;36:359-66

[108]

Jacobetz MA,Neesse A.Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer.Gut2013;62:112-20 PMCID:PMC3551211

[109]

Rodríguez-García A,Rojas JJ.Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression.Clin Cancer Res2015;21:1406-18

[110]

Braig F,Goebeler M.Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking.Blood2017;129:100-4

[111]

Xu X,Liang X.Mechanisms of relapse after CD19 CAR T-Cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies.Front Immunol2019;10:2664 PMCID:PMC6863137

[112]

Berdeja JG,Oriol A.Updated results of a phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM).JCO2021;39:8008-8008

[113]

van de Donk NWCJ,Berdeja JG.P10: talquetamab, a G protein-coupled receptor family C group 5 member D X CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (rrmm): updated phase 1 results from monumental-1.HemaSphere2022;6:16-7

[114]

Smith EL,Staehr M.GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells.Sci Transl Med2019;11:eaau7746 PMCID:PMC7508042

[115]

Nair-Gupta P,Luistro L.Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment.Blood Cancer J2020;10:65 PMCID:PMC7264144

[116]

Mikkilineni L.Chimeric antigen receptor T-cell therapies for multiple myeloma.Blood2017;130:2594-602 PMCID:PMC5731088

[117]

Goldsmith SR.Evolving paradigms of therapy for multiple myeloma: state of the art and future directions.JCO Oncol Pract2021;17:415-8

[118]

Mohan M,Dhakal B.Immunotherapy in multiple myeloma-time for a second major paradigm shift.JCO Oncol Pract2021;17:405-13

[119]

Kumar S.Multiple myeloma: from baby steps to giant strides.JCO Oncol Pract2021;17:419-20

[120]

Görgün GT,Anderson JL.Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans.Blood2013;121:2975-87 PMCID:PMC3624943

[121]

Ramachandran IR,Pisklakova A.Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow.J Immunol2013;190:3815-23 PMCID:PMC3608837

[122]

Uckun FM.Overcoming the immunosuppressive tumor microenvironment in multiple myeloma.Cancers (Basel)2021;13:2018 PMCID:PMC8122391

[123]

Verkleij CPM,van Duin M.Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma.Blood Adv2021;5:2196-215 PMCID:PMC8095149

[124]

Topp MS,Zugmaier G.Anti-B-cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma.J Clin Oncol2020;38:775-83

[125]

Topp MS,Zugmaier G.Treatment with AMG 420, an Anti-B-Cell Maturation Antigen (BCMA) Bispecific T-Cell Engager (BiTE®) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma (MM) patients: results of a first-in-human (FIH) phase I dose escalation study.Blood2018;132:1010

[126]

Usmani SZ,van de Donk NWCJ.Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study.The Lancet2021;398:665-74

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/