Cancer resistance to immunotherapy: What is the role of cancer stem cells?

Gourab Gupta , George Merhej , Shakthika Saravanan , Hexin Chen

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (4) : 981 -94.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (4) :981 -94. DOI: 10.20517/cdr.2022.19
review-article

Cancer resistance to immunotherapy: What is the role of cancer stem cells?

Author information +
History +
PDF

Abstract

Immunotherapy is an emerging form of cancer therapy that is associated with promising outcomes. However, most cancer patients either do not respond to immunotherapy or develop resistance to treatment. The resistance to immunotherapy is poorly understood compared to chemotherapy and radiotherapy. Since immunotherapy targets cells within the tumor microenvironment, understanding the behavior and interactions of different cells within that environment is essential to adequately understand both therapy options and therapy resistance. This review focuses on reviewing and analyzing the special features of cancer stem cells (CSCs), which we believe may contribute to cancer resistance to immunotherapy. The mechanisms are classified into three main categories: mechanisms related to surface markers which are differentially expressed on CSCs and help CSCs escape from immune surveillance and immune cells killing; mechanisms related to CSC-released cytokines which can recruit immune cells and tame hostile immune responses; and mechanisms related to CSC metabolites which modulate the activities of infiltrated immune cells in the tumor microenvironment. This review also discusses progress made in targeting CSCs with immunotherapy and the prospect of developing novel cancer therapies.

Keywords

Immunotherapy / cancer stem cells / immunotherapy resistance / tumor microenvironment

Cite this article

Download citation ▾
Gourab Gupta, George Merhej, Shakthika Saravanan, Hexin Chen. Cancer resistance to immunotherapy: What is the role of cancer stem cells?. Cancer Drug Resistance, 2022, 5(4): 981-94 DOI:10.20517/cdr.2022.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joyce JA.T cell exclusion, immune privilege, and the tumor microenvironment.Science2015;348:74-80

[2]

McGranahan N.Clonal heterogeneity and tumor evolution: past, present, and the future.Cell2017;168:613-28

[3]

Oh M.The perivascular niche and self-renewal of stem cells.Front Physiol2015;6:367 PMCID:PMC4667083

[4]

Clarke MF,Dirks PB et al.Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells.Cancer Res2006;66:9339-44

[5]

Norton L.Cancer stem cells, EMT, and seeding: a rose is a rose is a rose?.Oncology (Williston Park)2011;25:30-2

[6]

Shackleton M,Fearon ER.Heterogeneity in cancer: cancer stem cells versus clonal evolution.Cell2009;138:822-9

[7]

Palucka AK.The basis of oncoimmunology.Cell2016;164:1233-47 PMCID:PMC4788788

[8]

Li Y.Cancer stem cells: distinct entities or dynamically regulated phenotypes?.Cancer Res2012;72:576-80 PMCID:PMC3271803

[9]

Liu X,Liu S.Nonlinear growth kinetics of breast cancer stem cells: implications for cancer stem cell targeted therapy.Sci Rep2013;3:2473 PMCID:PMC3747506

[10]

Liu S.Targeting breast cancer stem cells.J Clin Oncol2010;28:4006-12 PMCID:PMC4872314

[11]

Zhou BB,Damelin M,Grindley JC.Tumour-initiating cells: challenges and opportunities for anticancer drug discovery.Nat Rev Drug Discov2009;8:806-23

[12]

Sehl ME,Zhou H.Differential destruction of stem cells: implications for targeted cancer stem cell therapy.Cancer Res2009;69:9481-9 PMCID:PMC2844253

[13]

Reya T,Clarke MF.Stem cells, cancer, and cancer stem cells.Nature2001;414:105-11

[14]

Nunes T,Leboeuf C.Targeting cancer stem cells to overcome chemoresistance.Int J Mol Sci2018;19:4036 PMCID:PMC6321478

[15]

Schreiber RD,Smyth MJ.Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion.Science2011;331:1565-70

[16]

Tallerico R,Di Franco S.Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules.J Immunol2013;190:2381-90

[17]

Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages.Molecules2018;24:9 PMCID:PMC6337345

[18]

Schatton T,Frank NY.Modulation of T-cell activation by malignant melanoma initiating cells.Cancer Res2010;70:697-708 PMCID:PMC2883769

[19]

Nakamura K.Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.Cell Mol Immunol2020;17:1-12 PMCID:PMC6952382

[20]

Casbon AJ,Park C.Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils.Proc Natl Acad Sci U S A2015;112:E566-75 PMCID:PMC4330753

[21]

Wu C,Zheng L.Generation of myeloid cells in cancer: the spleen matters.Front Immunol2020;11:1126 PMCID:PMC7291604

[22]

Wu C,Liu M.Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis.J Clin Invest2018;128:3425-38 PMCID:PMC6063469

[23]

Smith LK,McArthur GA.Is resistance to targeted therapy in cancer inevitable?.Cancer Cell2021;39:1047-9

[24]

Galluzzi L,Bravo-San Pedro JM.Classification of current anticancer immunotherapies.Oncotarget2014;5:12472-508 PMCID:PMC4350348

[25]

Schneble E,Hale DF.Peptide-based cancer vaccine strategies and clinical results. In: Thomas S, editor. Vaccine design. New York: Springer; 2016. p. 797-817.

[26]

Caldwell KJ,Talleur AC.Allogeneic CAR cell therapy-more than a pipe dream.Front Immunol2020;11:618427 PMCID:PMC7821739

[27]

Lapidot T,Vormoor J.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature1994;367:645-8

[28]

Rosen JM.The increasing complexity of the cancer stem cell paradigm.Science2009;324:1670-3 PMCID:PMC2873047

[29]

Civenni G,Kobert N.Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth.Cancer Res2011;71:3098-109

[30]

Quintana E,Sabel MS,Johnson TM.Efficient tumour formation by single human melanoma cells.Nature2008;456:593-8 PMCID:PMC2597380

[31]

Rountree CB,He L.Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice.Stem Cells2009;27:290-9 PMCID:PMC2847372

[32]

Kelly PN,Adams JM,Strasser A.Tumor growth need not be driven by rare cancer stem cells.Science2007;317:337

[33]

Irvin DK,Duvall G.T cells enhance stem-like properties and conditional malignancy in gliomas.PLoS One2010;5:e10974 PMCID:PMC2881867

[34]

Tahmasebi E,Yazdanian A,Tebyanian H.The current markers of cancer stem cell in oral cancers.Life Sci2020;249:117483

[35]

Mansour SF.Clinicopathological significance of CD133 and ALDH1 cancer stem cell marker expression in invasive ductal breast carcinoma.Asian Pac J Cancer Prev2015;16:7491-6

[36]

Walcher L,Suo H.Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies.Front Immunol2020;11:1280 PMCID:PMC7426526

[37]

Grau JJ,de la Iglesia-Vicente M.Enrichment of cells with cancer stem cell-like markers in relapses of chemoresistant patients with locally advanced head and neck squamous cell carcinoma.Oncology2016;90:267-72

[38]

Di Tomaso T,Wang E.Immunobiological characterization of cancer stem cells isolated from glioblastoma patients.Clin Cancer Res2010;16:800-13 PMCID:PMC2842003

[39]

Morrison BJ,Morris JC.Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells.BMC Cancer2018;18:469 PMCID:PMC5918869

[40]

Chikamatsu K,Sakakura K,Masuyama K.Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck.Head Neck2011;33:208-15 PMCID:PMC3426231

[41]

Salih HR,Gieseke F.Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia.Blood2003;102:1389-96

[42]

Sedgwick AJ,Constantinescu P,Barrow AD.The role of NK cells and innate lymphoid cells in brain cancer.Front Immunol2020;11:1549 PMCID:PMC7438769

[43]

Wang B,Wang Z.Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells.Cancer Res2014;74:5746-57

[44]

Jaiswal S,Pang WW.CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis.Cell2009;138:271-85 PMCID:PMC2775564

[45]

Michaels AD,Adair SJ.CD47 Blockade as an adjuvant immunotherapy for resectable pancreatic cancer.Clin Cancer Res2018;24:1415-25 PMCID:PMC6296745

[46]

Kim H,Jee S,Jang K.Clinicopathological significance of CD47 expression in hepatocellular carcinoma.J Clin Pathol2021;74:111-5

[47]

Valipour B,Naderali E.Cord blood stem cell derived CD16+ NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody.Life Sci2020;242:117223

[48]

Wu Y,Wu P,Xu ZP.Increased PD-L1 expression in breast and colon cancer stem cells.Clin Exp Pharmacol Physiol2017;44:602-4

[49]

Kikushige Y,Yuda J.A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression.Cell Stem Cell2015;17:341-52

[50]

Yao Y,Jin K.B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells.J Neurooncol2008;89:121-9

[51]

Sugiura D,Okazaki IM.Restriction of PD-1 function by.cis364:558-66

[52]

Miao Y,Levorse J.Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells.Cell2019;177:1172-1186.e14 PMCID:PMC6525024

[53]

van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics.J Exp Med1997;185:393-403 PMCID:PMC2196039

[54]

Vackova J,Johari SD.CD80 expression on tumor cells alters tumor microenvironment and efficacy of cancer immunotherapy by CTLA-4 blockade.Cancers (Basel)2021;13:1935 PMCID:PMC8072777

[55]

Lu H,Tam WL.A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages.Nat Cell Biol2014;16:1105-17 PMCID:PMC4296514

[56]

Pillay J,van Hoffen E.A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1.J Clin Invest2012;122:327-36 PMCID:PMC3248287

[57]

Carus A,Hager H,Donskov F.Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer.Br J Cancer2013;108:2116-22 PMCID:PMC3670536

[58]

Szaryńska M,Kobiela J,Śledziński Z.Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer.Sci Rep2018;8:12042 PMCID:PMC6089981

[59]

Landskron G,Thuwajit P,Hermoso MA.Chronic inflammation and cytokines in the tumor microenvironment.J Immunol Res2014;2014:149185 PMCID:PMC4036716

[60]

Guo B,Zhang J,Li Z.Targeting inflammasome/IL-1 pathways for cancer immunotherapy.Sci Rep2016;6:36107 PMCID:PMC5082376

[61]

Movahedi K,Gysemans C.Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes.Cancer Res2010;70:5728-39

[62]

Fisher DT,Skitzki JJ.IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells.J Clin Invest2011;121:3846-59 PMCID:PMC3195455

[63]

Teijeira A,Ochoa MC.IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy.Clin Cancer Res2021;27:2383-93

[64]

Rotondo R,Mastracci L.IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer.Int J Cancer2009;125:887-93

[65]

Rodriguez PC,Zabaleta J.Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.Cancer Res2004;64:5839-49

[66]

Deng X,Liang T,Chen X.Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways.Int J Mol Med2015;36:449-54

[67]

Li Q,Zhang Q,Ge D.Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells.Cancer Res Treat2014;46:297-306 PMCID:PMC4132449

[68]

Radharani NNV,Nimma R.Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway.Cancer Cell Int2022;22:122 PMCID:PMC8932105

[69]

Kim BG,Choi SH,Driscoll JJ.Novel therapies emerging in oncology to target the TGF-β pathway.J Hematol Oncol2021;14:55 PMCID:PMC8022551

[70]

Lee SH,Liu ZX.TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.Biochem Biophys Res Commun2012;424:58-64 PMCID:PMC3488595

[71]

Yang S,Guan C.Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer.J Leukoc Biol2011;89:85-91

[72]

León X,García J.Expression of IL-1α correlates with distant metastasis in patients with head and neck squamous cell carcinoma.Oncotarget2015;6:37398-409 PMCID:PMC4741937

[73]

Shahid A.The connection between the Th17 cell related cytokines and cancer stem cells in cancer: novel therapeutic targets.Immunol Lett2019;213:9-20

[74]

Jiang YX,Li PA.The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms.Oncogene2017;36:1256-64 PMCID:PMC5340802

[75]

El Hout M, Dos Santos L, Hamaï A, Mehrpour M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells.Semin Cancer Biol2018;53:125-38

[76]

Zhu X,Gao CY.Energy metabolism in cancer stem cells.World J Stem Cells2020;12:448-61 PMCID:PMC7360992

[77]

Kaymak I,Cantor JR.Immunometabolic interplay in the tumor microenvironment.Cancer Cell2021;39:28-37 PMCID:PMC7837268

[78]

Liu PP,Tang ZJ.Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway.Cell Death Differ2014;21:124-35 PMCID:PMC3857620

[79]

Martinez-Outschoorn UE,Ertel A.Ketones and lactate increase cancer cell “stemness” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics.Cell Cycle2011;10:1271-86 PMCID:PMC3117136

[80]

Zhao H,Hu Y.Differentiated cancer cell-originated lactate promotes the self-renewal of cancer stem cells in patient-derived colorectal cancer organoids.Cancer Lett2020;493:236-44

[81]

Husain Z,Seth P.Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells.J Immunol2013;191:1486-95

[82]

Yang X,Hang J.Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer.Cancer Immunol Res2020;8:1440-51

[83]

Zhang D,Huang H.Metabolic regulation of gene expression by histone lactylation.Nature2019;574:575-80 PMCID:PMC6818755

[84]

Brand A,Koehl GE.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells.Cell Metab2016;24:657-71

[85]

Fischer K,Voelkl S.Inhibitory effect of tumor cell-derived lactic acid on human T cells.Blood2007;109:3812-9

[86]

Rostamian H,Jafarzadeh L.Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions.BMC Cancer2022;22:39 PMCID:PMC8734242

[87]

Calcinotto A,Grioni M.Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes.Cancer Res2012;72:2746-56

[88]

Tomita H,Tanaka T.Aldehyde dehydrogenase 1A1 in stem cells and cancer.Oncotarget2016;7:11018-32 PMCID:PMC4905455

[89]

Li J,Ye Z.A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells.Commun Biol2021;4:1420 PMCID:PMC8692581

[90]

Sullivan KE,Cerione RA,Wilson KF.The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells.Oncotarget2017;8:22325-43 PMCID:PMC5410226

[91]

Marcato P,Liu RZ.Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling.Mol Oncol2015;9:17-31 PMCID:PMC5528683

[92]

Terzuoli E,Aversa S.ALDH3A1 overexpression in melanoma and lung tumors drives cancer stem cell expansion, impairing immune surveillance through enhanced PD-L1 output.Cancers (Basel)2019;11:1963 PMCID:PMC6966589

[93]

Devalaraja S,Folkert IW.Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression.Cell2020;180:1098-1114.e16 PMCID:PMC7194250

[94]

Grange C,Tritta S.Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation.BMC Cancer2015;15:1009 PMCID:PMC4690241

[95]

Kouidhi S,Benammar Elgaaied A.Targeting tumor metabolism: a new challenge to improve immunotherapy.Front Immunol2018;9:353 PMCID:PMC5829092

[96]

Zhang Y,Chu H.Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis.Mol Cell2018;71:201-215.e7

[97]

Chung SS,Vadgama JV.Constitutive activation of STAT3 signaling regulates hTERT and promotes stem cell-like traits in human breast cancer cells.PLoS One2013;8:e83971 PMCID:PMC3875492

[98]

Ahmed N,Kew Y.HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors.Clin Cancer Res2010;16:474-85 PMCID:PMC3682507

[99]

Inoda S,Torigoe T.Cytotoxic T lymphocytes efficiently recognize human colon cancer stem-like cells.Am J Pathol2011;178:1805-13 PMCID:PMC3078439

[100]

Fu C,Mi QS.DC-based vaccines for cancer immunotherapy.Vaccines (Basel)2020;8:706 PMCID:PMC7712957

[101]

Badrinath N.Recent advances in cancer stem cell-targeted immunotherapy.Cancers (Basel)2019;11:310 PMCID:PMC6468501

[102]

Yin T,Gou S,Wang C.Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs) lysates induce antitumor immune killing effect in vitro.PLoS One2014;9:e114581 PMCID:PMC4270694

[103]

Yang L,Yu J,Fan X.Oncolytic virotherapy: from bench to bedside.Front Cell Dev Biol2021;9:790150 PMCID:PMC8662562

[104]

Sato-Dahlman M,Huang JL.CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer.Oncotarget2017;8:76044-56 PMCID:PMC5652684

[105]

Han D,Zhuang Y,Qian Q.Current progress in CAR-T cell therapy for hematological malignancies.J Cancer2021;12:326-34 PMCID:PMC7738987

[106]

Patel U,Savani BN,Sengsayadeth S.CAR T cell therapy in solid tumors: a review of current clinical trials.EJHaem2022;3:24-31 PMCID:PMC9175685

[107]

Pan Q,Liu S.Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches.Stem Cells2015;33:2085-92 PMCID:PMC4478204

[108]

Deng Z,Ma W,Zhang YQ.Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM.BMC Immunol2015;16:1 PMCID:PMC4318439

[109]

Zhu X,Gaedicke S,Firat E.Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.Oncotarget2015;6:171-84 PMCID:PMC4381586

[110]

Zhang J.Current and future perspectives of chimeric antigen receptors against glioblastoma.Immunotherapy Advances2022;2:ltac014

[111]

Chen HC,Bridgeman JS.Synergistic targeting of breast cancer stem-like cells by human γδ T cells and CD8+ T cells.Immunol Cell Biol2017;95:620-9 PMCID:PMC5550559

[112]

Mocikat R,Gumy A.Natural killer cells activated by MHC class ILow targets prime dendritic cells to induce protective CD8 T cell responses.Immunity2003;19:561-9

[113]

Chan CJ,Martinet L.Molecular mechanisms of natural killer cell activation in response to cellular stress.Cell Death Differ2014;21:5-14 PMCID:PMC3857624

[114]

Ames E,Grossenbacher SK.NK cells preferentially target tumor cells with a cancer stem cell phenotype.J Immunol2015;195:4010-9 PMCID:PMC4781667

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/