Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo

Amani Yehya , Fatima Ghamlouche , Amin Zahwe , Yousef Zeid , Kevork Wakimian , Deborah Mukherji , Wassim Abou-Kheir

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) : 667 -90.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) :667 -90. DOI: 10.20517/cdr.2022.15
review-article

Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo

Author information +
History +
PDF

Abstract

Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.

Keywords

Prostate cancer / mCRPC / androgen receptor / drug resistance / novel targeted therapeutics

Cite this article

Download citation ▾
Amani Yehya, Fatima Ghamlouche, Amin Zahwe, Yousef Zeid, Kevork Wakimian, Deborah Mukherji, Wassim Abou-Kheir. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. Cancer Drug Resistance, 2022, 5(3): 667-90 DOI:10.20517/cdr.2022.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barsouk A,Vakiti A.Epidemiology, staging and management of prostate cancer.Med Sci (Basel)2020;8:28 PMCID:PMC7565452

[2]

Siegel RL,Fuchs HE.Cancer Statistics, 2021.CA Cancer J Clin2021;71:7-33

[3]

Denmeade SR.A history of prostate cancer treatment.Nat Rev Cancer2002;2:389-96 PMCID:PMC4124639

[4]

Xu Y,Ross KN.Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins.Cancer Res2006;66:7783-92

[5]

Litwin MS.The diagnosis and treatment of prostate cancer: a review.JAMA2017;317:2532-42

[6]

Karantanos T,Thompson TC.Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches.Oncogene2013;32:5501-11 PMCID:PMC3908870

[7]

Bono JS, Logothetis CJ, Molina A, et al; COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer.N Engl J Med2011;364:1995-2005

[8]

Fizazi K,Molina A.Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study.Lancet Oncol2012;13:983-92

[9]

Ryan CJ,de Bono JS.COU-AA-302 InvestigatorsAbiraterone in metastatic prostate cancer without previous chemotherapy.N Engl J Med2013;368:138-48

[10]

Scher HI,Saad F.AFFIRM InvestigatorsIncreased survival with enzalutamide in prostate cancer after chemotherapy.N Engl J Med2012;367:1187-97

[11]

Massard C,Culine S.Arades trial: a first-in-man, open-label, phase I/II safety, pharmacokinetic, and proof-of-concept study of ODM-201 in patients (PTS) with progressive metastatic castration-resistant prostate cancer (MCRPC).Ann Oncol2012;23:ixe16

[12]

Tannock IF,Berry WR.TAX 327 InvestigatorsDocetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer.N Engl J Med2004;351:1502-12

[13]

de Bono JS,Ozguroglu M.Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial.The Lancet2010;376:1147-54

[14]

Parker C,Heinrich D.ALSYMPCA InvestigatorsAlpha emitter radium-223 and survival in metastatic prostate cancer.N Engl J Med2013;369:213-23

[15]

Hussain M,Fizazi K.Survival with olaparib in metastatic castration-resistant prostate cancer.N Engl J Med2020;383:2345-57

[16]

Kantoff PW,Shore ND.IMPACT Study InvestigatorsSipuleucel-T immunotherapy for castration-resistant prostate cancer.N Engl J Med2010;363:411-22

[17]

Mohler JL.Castration-recurrent prostate cancer is not androgen-independent. In: Li JJ, Li SA, Mohla S, Rochefort H, Maudelonde T, editors. Hormonal Carcinogenesis V. New York: Springer; 2008. p. 223-34.

[18]

Tucci M,Vignani F.Metastatic castration-resistant prostate cancer: time for innovation.Future Oncol2015;11:91-106

[19]

Sonpavde G,Bellmunt J.The role of abiraterone acetate in the management of prostate cancer: a critical analysis of the literature.Eur Urol2011;60:270-8

[20]

Pia A,Attard G.Strategies for managing ACTH dependent mineralocorticoid excess induced by abiraterone.Cancer Treat Rev2013;39:966-73

[21]

Sydes M,Spears M.Adding abiraterone acetate plus prednisolone (AAP) or docetaxel for patients (pts) with high-risk prostate cancer (PCa) starting long-term androgen deprivation therapy (ADT): directly randomised data from STAMPEDE (NCT00268476).Ann Oncol2017;28:v619

[22]

Sternberg CN,Madan RA.Progress in the treatment of advanced prostate cancer.Am Soc Clin Oncol Educ Book2014;:117-31

[23]

Beer TM,Rathkopf D.Enzalutamide in men with chemotherapy-naïve metastatic castration-resistant prostate cancer: extended analysis of the phase 3 PREVAIL study.Eur Urol2017;71:151-4 PMCID:PMC5570461

[24]

Tran C,Clegg NJ.Development of a second-generation antiandrogen for treatment of advanced prostate cancer.Science2009;324:787-90 PMCID:PMC2981508

[25]

Haldar S,Croce CM.Bcl2 is the guardian of microtubule integrity.Cancer Res1997;57:229-33.

[26]

Giannakakou P,Nicolaou KC.Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics.Proc Natl Acad Sci USA2002;99:10855-60 PMCID:PMC125062

[27]

Thadani-Mulero M,Giannakakou P.Androgen receptor on the move: boarding the microtubule expressway to the nucleus.Cancer Res2012;72:4611-5 PMCID:PMC3448065

[28]

Santis M, Saad F. Practical guidance on the role of corticosteroids in the treatment of metastatic castration-resistant prostate cancer.Urology2016;96:156-64

[29]

Teply BA,Denmeade SR.The influence of prednisone on the efficacy of docetaxel in men with metastatic castration-resistant prostate cancer.Prostate Cancer Prostatic Dis2016;19:72-8 PMCID:PMC4748735

[30]

Hirayama Y.Does increased expression of glucocorticoid receptor support application of antagonists to this receptor for the treatment of castration resistant prostate cancer?.AME Med J2018;3:66-66 PMCID:PMC6124673

[31]

Rice MA,Stoyanova T.Second-generation antiandrogens: from discovery to standard of care in castration resistant prostate cancer.Front Oncol2019;9:801 PMCID:PMC6723105

[32]

Aggarwal RR,Youngren J.Androgen receptor (AR) amplification in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) resistant to abiraterone (Abi) and enzalutamide (Enz): preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT).J Clin Oncol2015;15:5068

[33]

Kim EH,Mahajan NP,Mahajan K.ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers.NAR Cancer2020;2:zcaa018 PMCID:PMC7454006

[34]

Lakshmana G.Interference with the androgen receptor protein stability in therapy-resistant prostate cancer.Int. J. Cancer2019;144:1775-9.

[35]

Chen CD,Tran C.Molecular determinants of resistance to antiandrogen therapy.Nat Med2004;10:33-9

[36]

Grasso CS,Robinson DR.The mutational landscape of lethal castration-resistant prostate cancer.Nature2012;487:239-43 PMCID:PMC3396711

[37]

Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer.Cell2015;163:1011-25

[38]

Conteduca V,Sharabiani MTA.PREMIERE Collaborators, Spanish Oncology Genitourinary Group. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study.Ann Oncol2017;28:1508-16 PMCID:PMC5834043

[39]

Romanel A,Conteduca V.Plasma AR and abiraterone-resistant prostate cancer.Sci Transl Med2015;7:312re10 PMCID:PMC6112410

[40]

Mostaghel EA,Plymate SR.Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants.Clin Cancer Res2011;17:5913-25 PMCID:PMC3184252

[41]

Kawata H,Watanabe M,Tsunenari T.Prolonged treatment with bicalutamide induces androgen receptor overexpression and androgen hypersensitivity.Prostate2010;70:745-54

[42]

Yamamoto Y,Beraldi E.Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth.Clin Cancer Res2015;21:1675-87

[43]

Robinson D,Wu YM.Integrative clinical genomics of advanced prostate cancer.Cell2015;161:1215-28 PMCID:PMC4484602

[44]

Taylor BS,Hieronymus H.Integrative genomic profiling of human prostate cancer.Cancer Cell2010;18:11-22 PMCID:PMC3198787

[45]

Lorente D,Zafeiriou Z.Switching and withdrawing hormonal agents for castration-resistant prostate cancer.Nat Rev Urol2015;12:37-47

[46]

Beltran H,Frampton GM.Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.Eur Urol2013;63:920-6 PMCID:PMC3615043

[47]

Gottlieb B,Nadarajah A,Trifiro M.The androgen receptor gene mutations database: 2012 update.Hum Mutat2012;33:887-94

[48]

Culig Z,Cronauer MV.Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone.Mol Endocrinol1993;7:1541-50

[49]

Steketee K,Ziel-van der Made AC,Brinkmann AO.Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer.Int J Cancer2002;100:309-17

[50]

Balbas MD,Hosfield DJ.Overcoming mutation-based resistance to antiandrogens with rational drug design.Elife2013;2:e00499 PMCID:PMC3622181

[51]

Joseph JD,Qian J.A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509.Cancer Discov2013;3:1020-9

[52]

Coffey K.Regulation of the androgen receptor by post-translational modifications.J Endocrinol2012;215:221-37

[53]

Wen S,Huang H.Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer.Asian J Urol2020;7:203-18 PMCID:PMC7525085

[54]

Gioeli D.Post-translational modification of the androgen receptor.Mol Cell Endocrinol2012;352:70-8

[55]

Chen MF,Chang YJ,Wu CT.Role of DNA methyltransferase 1 in hormone-resistant prostate cancer.J Mol Med (Berl)2010;88:953-62

[56]

Ponguta LA,French FS.Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer.J Biol Chem2008;283:20989-1001 PMCID:PMC2475695

[57]

Mahajan K,Coppola D.Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity.Prostate2010;70:1274-85 PMCID:PMC3953126

[58]

Tatarov O,Seywright M,Brunton VG.SRC family kinase activity is up-regulated in hormone-refractory prostate cancer.Clin Cancer Res2009;15:3540-9

[59]

Migliaccio A,De Falco A.Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth.Oncogene2007;26:6619-29

[60]

Cai H,Wei X,Witte ON.Invasive prostate carcinoma driven by c-Src and androgen receptor synergy.Cancer Res2011;71:862-72 PMCID:PMC3032821

[61]

Guo Z,Jiang T.Regulation of androgen receptor activity by tyrosine phosphorylation.Cancer Cell2006;10:309-19

[62]

Xu K,Linn DE.Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination.Cancer Cell2009;15:270-82 PMCID:PMC2848969

[63]

Burska UL,Coffey K.Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor.J Biol Chem2013;288:32641-50 PMCID:PMC3820899

[64]

Senapati D,Heemers HV.Androgen receptor co-regulation in prostate cancer.Asian J Urol2020;7:219-32 PMCID:PMC7385509

[65]

Culig Z.Androgen receptor coactivators in regulation of growth and differentiation in prostate cancer.J Cell Physiol2016;231:270-4

[66]

Ni L,Gioeli D,Toft DO.FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells.Mol Cell Biol2010;30:1243-53 PMCID:PMC2820886

[67]

Chen S,Toft DO.Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants.Cell Stress Chaper1998;3:118

[68]

Sharma A,Ertel A.The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression.J Clin Invest2010;120:4478-92 PMCID:PMC2993601

[69]

Liu C,Duan X.The MYH9 cytoskeletal protein is a novel corepressor of androgen receptors.Front Oncol2021;11:641496 PMCID:PMC8093144

[70]

Teng M,Cai C,He HH.Pioneer of prostate cancer: past, present and the future of FOXA1.Protein Cell2021;12:29-38 PMCID:PMC7815845

[71]

Gupta S,Kemeny G.Whole genomic copy number alterations in circulating tumor cells from men with abiraterone or enzalutamide-resistant metastatic castration-resistant prostate cancer.Clin Cancer Res2017;23:1346-57

[72]

Büscheck F,Heumann A.The independent prognostic impact of the GATA2 pioneering factor is restricted to ERG-negative prostate cancer.Tumour Biol2019;41:1010428318824815

[73]

Vidal SJ,Quinn SA, et al.A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer.Cancer cell2015;27:223-39 PMCID:PMC4356948

[74]

Yao J,Nguyen DT.The homeobox gene, HOXB13, regulates a mitotic protein-kinase interaction network in metastatic prostate cancers.Sci Rep2019;9:9715 PMCID:PMC6609629

[75]

Faisal* F,Davicioni E.MP68-10 hoxb13 expression and its role in prostate cancer progression and neuroendocrine differentiation.J Urol2019;201

[76]

Kim YR,Park RY.HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling.Mol Cancer2010;9:124 PMCID:PMC2890607

[77]

Navarro HI.HoxB13 mediates AR-V7 activity in prostate cancer.Proc Natl Acad Sci USA2018;115:6528-9 PMCID:PMC6042116

[78]

Guo Z,Sun F.A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth.Cancer Res2009;69:2305-13 PMCID:PMC2672822

[79]

Hu R,Wei S.Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer.Cancer Res2009;69:16-22 PMCID:PMC2614301

[80]

Antonarakis ES,Wang H.AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer.N Engl J Med2014;371:1028-38 PMCID:PMC4201502

[81]

Li Y,Brand LJ,Silverstein KA.Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines.Cancer Res2013;73:483-9 PMCID:PMC3549016

[82]

Hörnberg E,Crnalic S.Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival.PLoS One2011;6:e19059 PMCID:PMC3084247

[83]

Montgomery RB,Vessella R.Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth.Cancer Res2008;68:4447-54 PMCID:PMC2536685

[84]

Geller J,Loza D.Steroid levels in cancer of the prostate-markers of tumour differentiation and adequacy of anti-androgen therapy.J Steroid Biochem1979;11:631-6

[85]

Kumagai J,Erkens-Schulze S et al.Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.The Prostate2013;73:1636-50

[86]

Yin L.CYP17 inhibitors-abiraterone, C17, 20-lyase inhibitors and multi-targeting agents.Nat Rev Urol2014;11:32-42

[87]

Knuuttila M,Kallio J.Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model.Am J Pathol2014;184:2163-73

[88]

Tamae D,Montgomery B.The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer.Chem Biol Interact2015;234:332-8 PMCID:PMC4414681

[89]

Chmelar R,Need EF,Greenberg NM.Androgen receptor coregulators and their involvement in the development and progression of prostate cancer.Int J Cancer2007;120:719-33

[90]

Liu C,Zhu Y.Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer.Cancer Res2015;75:1413-22 PMCID:PMC4383695

[91]

Stanbrough M,Ross K.Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.Cancer Res2006;66:2815-25

[92]

Crona DJ.Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance.Cancers (Basel)2017;9:67 PMCID:PMC5483886

[93]

Arora VK,Murali R.Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade.Cell2013;155:1309-22 PMCID:PMC3932525

[94]

Isikbay M,Kregel S.Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer.Horm Cancer2014;5:72-89 PMCID:PMC4440041

[95]

Kroon J,Buijs JT.Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer.Endocr Relat Cancer2016;23:35-45 PMCID:PMC4657186

[96]

Puhr M,Eigentler A.The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy.Clin Cancer Res2018;24:927-38

[97]

Carver BS.Defining and targeting the oncogenic drivers of neuroendocrine prostate cancer.Cancer Cell2016;29:431-2 PMCID:PMC5550814

[98]

Sequist LV,Dias-Santagata D.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Sci Transl Med2011;3:75ra26 PMCID:PMC3132801

[99]

Aparicio AM,Tapia EL.Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers.Clin Cancer Res2016;22:1520-30 PMCID:PMC4794379

[100]

Tan HL,Rahimi HA.Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma.Clin Cancer Res2014;20:890-903 PMCID:PMC3931005

[101]

Ku SY,Wang Y.Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.Science2017;355:78-83 PMCID:PMC5367887

[102]

Mu P,Benelli M.SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer.Science2017;355:84-8 PMCID:PMC5247742

[103]

Lee JK,Smith BA.N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells.Cancer Cell2016;29:536-47 PMCID:PMC4829466

[104]

Orme JJ.Microenvironment-mediated resistance to anti-androgen therapy.Cancer Cell2020;38:155-7

[105]

Gil V,Riisnaes R.PCF/SU2C international prostate cancer dream teamHER3 is an actionable target in advanced prostate cancer.Cancer Res2021;81:6207-18 PMCID:PMC8932336

[106]

Zhang Z,Lee YS.Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer.Cancer Cell2020;38:279-296.e9 PMCID:PMC7472556

[107]

Pang X,Zhang X,Cui Y.Osteopontin as a multifaceted driver of bone metastasis and drug resistance.Pharmacol Res2019;144:235-44

[108]

Pang X,He X.SPP1 promotes enzalutamide resistance and epithelial-mesenchymal-transition activation in castration-resistant prostate cancer via PI3K/AKT and ERK1/2 pathways.Oxid Med Cell Longev2021;2021:5806602 PMCID:PMC8556132

[109]

Zheng G,Zou Y,Li W.HCMDB: the human cancer metastasis database.Nucleic Acids Res2018;46:D950-5 PMCID:PMC5753185

[110]

Harman SM,Blackman MR,Carter HB.Baltimore Longitudinal Study on AgingSerum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer.J Clin Endocrinol Metab2000;85:4258-65

[111]

Hour TC,Kang WY.EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1).Arch Toxicol2015;89:591-605

[112]

Liao Y,Xia X.Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer.J Exp Clin Cancer Res2019;38:157 PMCID:PMC6460657

[113]

Mahajan NP,Majumder S.Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.Proc Natl Acad Sci U S A2007;104:8438-43 PMCID:PMC1895968

[114]

Pearson HB,Meniel VS.Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with pten loss to accelerate progression and castration-resistant growth.Cancer Discov2018;8:764-79

[115]

Bitting RL.Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer.Endocr Relat Cancer2013;20:R83-99

[116]

Shorning BY,Smalley MJ.The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling.Int J Mol Sci2020;21:4507 PMCID:PMC7350257

[117]

Rybak AP,Kapoor A.Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression.Oncotarget2015;6:1900-19 PMCID:PMC4385825

[118]

Jeong JH,Guimaraes AS.BRAF activation initiates but does not maintain invasive prostate adenocarcinoma.PLoS One2008;3:e3949

[119]

Culig Z.Interleukin-6 function and targeting in prostate cancer. In: Birbrair A, editor. Tumor microenvironment. Cham: Springer International Publishing; 2021. p.1-8.

[120]

Bishop JL,Zoubeidi A.The multifaceted roles of STAT3 signaling in the progression of prostate cancer.Cancers (Basel)2014;6:829-59 PMCID:PMC4074806

[121]

Liu C,Zhu Y.Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer.Clin Cancer Res2014;20:3198-210 PMCID:PMC4058390

[122]

Xiao W,Wang L,Zhang X.Co-operative functions between nuclear factors NFkappaB and CCAT/enhancer-binding protein-beta (C/EBP-beta) regulate the IL-6 promoter in autocrine human prostate cancer cells.Prostate2004;61:354-70

[123]

Miguel MP, Royuela M, Bethencourt FR, Santamaría L, Fraile B, Paniagua R. Immunoexpression of tumour necrosis factor-alpha and its receptors 1 and 2 correlates with proliferation/apoptosis equilibrium in normal, hyperplasic and carcinomatous human prostate.Cytokine2000;12:535-8

[124]

Araki S,Lyn D.Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer.Cancer Res2007;67:6854-62

[125]

Aalinkeel R,Sufrin G.Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells.Cancer Res2004;64:5311-21

[126]

Lehrer S,Mamkine B,Stock RG.Serum interleukin-8 is elevated in men with prostate cancer and bone metastases.Technol Cancer Res Treat2004;3:411

[127]

Bouraoui Y,García-Tuñón I.Pro-inflammatory cytokines and prostate-specific antigen in hyperplasia and human prostate cancer.Cancer Detect Prev2008;32:23-32

[128]

Aly A.BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability.J Mol Cell Biol2011;3:66-74 PMCID:PMC3030974

[129]

Adashek JJ,Zhang J.Clinical development of PARP inhibitors in treating metastatic castration-resistant prostate cancer.Cells2019;8:860 PMCID:PMC6721701

[130]

Bakht MK,Youn H,Kwak C.Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: emerging opportunities and challenges.Nucl Med Mol Imaging2017;51:202-11 PMCID:PMC5567615

[131]

O’Keefe DS,Huang SS.A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies.J Nucl Med2018;59:1007-13 PMCID:PMC6910646

[132]

Silver DA,Fair WR,Cordon-Cardo C.Prostate-specific membrane antigen expression in normal and malignant human tissues.Clin Cancer Res1997;3:81-5.

[133]

Mateo J,Sandhu S.DNA-repair defects and olaparib in metastatic prostate cancer.N Engl J Med2015;373:1697-708 PMCID:PMC5228595

[134]

Mateo J,Bianchini D.Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial.Lancet Oncol2020;21:162-74 PMCID:PMC6941219

[135]

de Bono J,Fizazi K.Olaparib for metastatic castration-resistant prostate cancer.N Engl J Med2020;382:2091-102

[136]

Abida W,Campbell D.TRITON2 investigatorsRucaparib in men with metastatic castration-resistant prostate cancer harboring a.BRCA12020;38:3763-72 PMCID:PMC7655021

[137]

Abida W,Patnaik A.Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the Phase II TRITON2 study.Clin Cancer Res2020;26:2487-96 PMCID:PMC8435354

[138]

Smith M,Kelly W.Pre-specified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD).Ann Oncol2019;30:v884-5

[139]

Smith MR,Kelly WK.GALAHAD InvestigatorsPhase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): preliminary results of GALAHAD.JCO2019;37:202-202

[140]

de Bono JS,Scagliotti GV.Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial.Lancet Oncol2021;22:1250-64

[141]

Hofman MS,Hicks RJ.[177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study.Lancet Oncol2018;19:825-33

[142]

Violet J,Iravani A.Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer.J Nucl Med2020;61:857-65 PMCID:PMC7262220

[143]

Hofman MS,Sandhu S.[177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial.The Lancet2021;397:797-804

[144]

Sartor O,Chi KN.VISION InvestigatorsLutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer.N Engl J Med2021;385:1091-103 PMCID:PMC8446332

[145]

Slovin SF,Hullings M.Chimeric antigen receptor (CAR + ) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC).JCO2013;31:72-72

[146]

Narayan V,Plesa G.A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer.JCO2019;37:TPS347-TPS347

[147]

Petrylak DP,Chatta K.PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study.Prostate2020;80:99-108

[148]

de Bono JS,Wang JS.Phase I study of MEDI3726: a prostate-specific membrane antigen-targeted antibody-drug conjugate, in patients with mCRPC after failure of abiraterone or enzalutamide.Clin Cancer Res2021;27:3602-9

[149]

Milowsky MI,Morris MJ.Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer.Urol Oncol2016;34:530.e15-21 PMCID:PMC5464417

[150]

Hummel H,Grüllich C.Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting bispecific T cell engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC).JCO2019;37:5034-5034

[151]

Tran B,Dorff TB.Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy targeting prostate-specific membrane antigen (PSMA), in patients with metastatic castration-resistant prostate cancer (mCRPC).JCO2020;38:TPS261-TPS261

[152]

Tran B,Rettig M.Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE immune therapy) targeting prostate-specific membrane antigen, in patients with metastatic castration-resistant prostate cancer (mCRPC).JCO2020;38:TPS5590-TPS5590

[153]

Petrylak DP,Vogelzang NJ.First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI).JCO2020;38:3500

[154]

de Bono JS,Rodrigues DN.Randomized phase II study evaluating akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss.Clin Cancer Res2019;25:928-36

[155]

De Bono JS,Massard C.Randomized phase II study of AKT blockade with ipatasertib (GDC-0068) and abiraterone (Abi) vs. Abi alone in patients with metastatic castration-resistant prostate cancer (mCRPC) after docetaxel chemotherapy (A. MARTIN Study).JCO2016;34:5017

[156]

Sweeney C,Sternberg CN.Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial.The Lancet2021;398:131-42

[157]

Amé JC,de Murcia G.The PARP superfamily.Bioessays2004;26:882-93

[158]

Shaheen M,Nickoloff JA.Synthetic lethality: exploiting the addiction of cancer to DNA repair.Blood2011;117:6074-82

[159]

Rescigno P,de Bono J.Relevance of poly (ADP-ribose) polymerase inhibitors in prostate cancer.Curr Opin Support Palliat Care2018;12:339-43

[160]

Xu C,Jiang H.Recent advances in DNA repair pathway and its application in personalized care of metastatic castration-resistant prostate cancer (mCRPC). In: Huang T, editor. Precision Medicine. New York: Springer US; 2020. p. 75-89.

[161]

Kamel D,Walia JS.PARP inhibitor drugs in the treatment of breast, ovarian, prostate and pancreatic cancers: an update of clinical trials.Curr Drug Targets2018;19:21-37

[162]

PubChem. PubChem Compound Summary for CID 23725625, Olaparib. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Olaparib [Last accessed on 5 May 2022]

[163]

Nientiedt C,Zschäbitz S.PARP inhibition in prostate cancer.Genes Chromosomes Cancer2021;60:344-51

[164]

Food U. FDA approves olaparib for HRR gene-mutated metastatic castration-resistant prostate cancer. silver spring, MD, US FDA; 2020

[165]

Marshall CH,McNatty AL.Differential response to olaparib treatment among men with metastatic castration-resistant prostate cancer harboring BRCA1 or BRCA2 versus ATM mutations.Eur Urol2019;76:452-8 PMCID:PMC6703974

[166]

Jang A,Barata PC.Therapeutic potential of PARP inhibitors in the treatment of metastatic castration-resistant prostate cancer.Cancers (Basel)2020;12:3467 PMCID:PMC7700539

[167]

PubChem. PubChem compound summary for CID 9931954, rucaparib. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Rucaparib [Last accessed on 5 May 2022]

[168]

Murai J,Renaud A.Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib.Mol Cancer Ther2014;13:433-43 PMCID:PMC3946062

[169]

Anscher MS,Gao X.FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA-mutated metastatic castrate-resistant prostate cancer.Oncologist2021;26:139-46 PMCID:PMC7873319

[170]

PubChem. PubChem compound summary for CID 24958200, Niraparib. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Niraparib [Last accessed on 5 May 2022]

[171]

PubChem. PubChem compound summary for CID 135565082, Talazoparib. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Talazoparib [Last accessed on 5 May 2022]

[172]

Takebe N,Gupta G.PARP inhibition to enhance response to chemotherapy. Targeting cell survival pathways to enhance response to chemotherapy.Elsevier2019;231-57

[173]

Eiber M,Rowe SP.Prostate-specific membrane antigen ligands for imaging and therapy.J Nucl Med2017;58:67S-76S

[174]

Giraudet AL,Hofman M.PSMA targeting in metastatic castration-resistant prostate cancer: where are we and where are we going?.Ther Adv Med Oncol2021;13:17588359211053898 PMCID:PMC8554551

[175]

Rahbar K,Kratochwil C.German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients.J Nucl Med2017;58:85-90

[176]

Poty S,McDevitt MR,Lewis JS.α-Emitters for radiotherapy: from basic radiochemistry to clinical studies-part 1.J Nucl Med2018;59:878-84 PMCID:PMC6004557

[177]

Lee DY.Effects of 225Ac-labeled prostate-specific membrane antigen radioligand therapy in metastatic castration-resistant prostate cancer: a meta-analysis.J Nucl Med2022;63:840-6

[178]

Brudno JN.Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management.Blood Rev2019;34:45-55 PMCID:PMC6628697

[179]

Hong M,Chen YY.Engineering CAR-T cells for next-generation cancer therapy.Cancer Cell2020;38:473-88

[180]

Schepisi G,Casadei C.CAR-T cell therapy: a potential new strategy against prostate cancer.J Immunother Cancer2019;7:258 PMCID:PMC6794851

[181]

Nejadmoghaddam MR,Ghahremanzadeh R,Dinarvand R.Antibody-drug conjugates: possibilities and challenges.Avicenna J Med Biotechnol2019;11:3-23 PMCID:PMC6359697

[182]

Khongorzul P,Khan FU,Zhang J.Antibody-drug conjugates: a comprehensive review.Mol Cancer Res2020;18:3-19

[183]

Wang X,Walker E.Small molecule-based prodrug targeting prostate specific membrane antigen for the treatment of prostate cancer.Cancers (Basel)2021;13:417 PMCID:PMC7865627

[184]

Zhou S,Ren F,Yu J.The landscape of bispecific T cell engager in cancer treatment.Biomark Res2021;9:38 PMCID:PMC8157659

[185]

Franquiz MJ.Blinatumomab for the treatment of adult B-cell acute lymphoblastic leukemia: toward a new era of targeted immunotherapy.Biologics2020;14:23-34 PMCID:PMC7027838

[186]

Nie S,Moscoso-Castro M.Biology drives the discovery of bispecific antibodies as innovative therapeutics.Antib Ther2020;3:18-62 PMCID:PMC7990219

[187]

Subudhi SK,Maly JJ.Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC).JCO2021;39:TPS5088-TPS5088

[188]

Dorff T,Machiels J-P, et al.340 Phase 1 study of AMG 160, a half-life extended BiTE® (bispecific T-cell engager) therapy targeting prostate-specific membrane antigen, in patients with metastatic castration-resistant prostate cancer.J Immunother Cancer2020;8:A207-A8

[189]

Gulley JL,Vogelzang NJ.Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer.J Clin Oncol2019;37:1051-61 PMCID:PMC6494360

[190]

Antonarakis ES.Phase III trials with docetaxel-based combinations for metastatic castration-resistant prostate cancer: time to learn from past experiences.J Clin Oncol2013;31:1709-12 PMCID:PMC4812821

[191]

Olson WC,Rajasekaran AK.Clinical trials of cancer therapies targeting prostate-specific membrane antigen.Rev Recent Clin Trials2007;2:182-90

[192]

Hashemzadeh P,Valizadeh Otaghsara SM.Novel predicted B-Cell epitopes of PSMA for development of prostate cancer vaccine.Int J Pept Res Ther2020;26:1523-5

[193]

Toure M.Small-molecule PROTACS: new approaches to protein degradation.Angew Chem Int Ed Engl2016;55:1966-73

[194]

Salami J,Willard RR.Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance.Commun Biol2018;1:100 PMCID:PMC6123676

[195]

PubChem. PubChem compound summary for CID 24788740, Ipatasertib. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ipatasertib [Last accessed on 5 May 2022]

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/