The evolving role of DNA damage response in overcoming therapeutic resistance in ovarian cancer

Sara Bouberhan , Liron Bar-Peled , Yusuke Matoba , Varvara Mazina , Lauren Philp , Bo R. Rueda

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) : 345 -57.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) :345 -57. DOI: 10.20517/cdr.2022.146
review-article

The evolving role of DNA damage response in overcoming therapeutic resistance in ovarian cancer

Author information +
History +
PDF

Abstract

Epithelial ovarian cancer (EOC) is treated in the first-line setting with combined platinum and taxane chemotherapy, often followed by a maintenance poly (ADP-ribose) polymerase inhibitor (PARPi). Responses to first-line treatment are frequent. For many patients, however, responses are suboptimal or short-lived. Over the last several years, multiple new classes of agents targeting DNA damage response (DDR) mechanisms have advanced through clinical development. In this review, we explore the preclinical rationale for the use of ATR inhibitors, CHK1 inhibitors, and WEE1 inhibitors, emphasizing their application to chemotherapy-resistant and PARPi-resistant ovarian cancer. We also present an overview of the clinical development of the leading drugs in each of these classes, emphasizing the rationale for monotherapy and combination therapy approaches.

Keywords

Ovarian cancer / platinum resistance / PARPi resistance / DDR

Cite this article

Download citation ▾
Sara Bouberhan, Liron Bar-Peled, Yusuke Matoba, Varvara Mazina, Lauren Philp, Bo R. Rueda. The evolving role of DNA damage response in overcoming therapeutic resistance in ovarian cancer. Cancer Drug Resistance, 2023, 6(2): 345-57 DOI:10.20517/cdr.2022.146

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Fuchs HE.Cancer statistics, 2022.CA Cancer J Clin2022;72:7-33

[2]

Matulonis UA,Fallowfield L,Sehouli J.Ovarian cancer.Nat Rev Dis Primers2016;2:16061 PMCID:PMC7290868

[3]

Colombo PE,Theillet C,Rouanet P.Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer.Crit Rev Oncol Hematol2014;89:207-16

[4]

Damia G.Platinum resistance in ovarian cancer: role of DNA repair.Cancers2019;11:119 PMCID:PMC6357127

[5]

Khan MA,Sudan SK.Platinum-resistant ovarian cancer: from drug resistance mechanisms to liquid biopsy-based biomarkers for disease management.Semin Cancer Biol2021;77:99-109 PMCID:PMC8665066

[6]

Rottenberg S,Perego P.The rediscovery of platinum-based cancer therapy.Nat Rev Cancer2021;21:37-50

[7]

McMullen M,Madariaga A.Overcoming platinum and PARP-inhibitor resistance in ovarian cancer.Cancers2020;12:1607 PMCID:PMC7352566

[8]

Lord CJ.PARP inhibitors: Synthetic lethality in the clinic.Science2017;355:1152-8

[9]

Jackson SP.The DNA-damage response in human biology and disease.Nature2009;461:1071-8 PMCID:PMC2906700

[10]

Moore K,Scambia G.Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.N Engl J Med2018;379:2495-505

[11]

Konstantinopoulos PA,Shapiro GI.Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer.Cancer Discov2015;5:1137-54 PMCID:PMC4631624

[12]

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.Nature2011;474:609-15 PMCID:PMC3163504

[13]

Ray-Coquard I,Pignata S.PAOLA-1 investigatorsOlaparib plus bevacizumab as first-line maintenance in ovarian cancer.N Engl J Med2019;381:2416-28

[14]

González-Martín A,Vergote I.PRIMA/ENGOT-OV26/GOG-3012 investigatorsNiraparib therapy in patients with newly diagnosed advanced ovarian cancer.N Engl J Med2019;381:2391-402

[15]

Weigelt B,de Bruijn I.Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer.Clin Cancer Res2017;23:6708-20

[16]

Yang ZM,Chen Y.Combining 53BP1 with BRCA1 as a biomarker to predict the sensitivity of poly(ADP-ribose) polymerase (PARP) inhibitors.Acta Pharmacol Sin2017;38:1038-47 PMCID:PMC5519258

[17]

Färkkilä A,Oikkonen J.Heterogeneity and clonal evolution of acquired PARP inhibitor resistance in TP53- and BRCA1-deficient cells.Cancer Res2021;81:2774-87 PMCID:PMC8323804

[18]

D'Andrea AD.Mechanisms of PARP inhibitor sensitivity and resistance.DNA Repair2018;71:172-6

[19]

Drzewiecka M,Czarny P,Śliwiński T.Synthetic lethality targeting Polθ.Genes2022;13:1101 PMCID:PMC9223150

[20]

Le BV,Piwocka K.Pre-Existing and acquired resistance to PARP inhibitor-induced synthetic lethality.Cancers2022;14:5795 PMCID:PMC9741207

[21]

Ceccaldi R,Amunugama R.Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair.Nature2015;518:258-62 PMCID:PMC4415602

[22]

Zatreanu D,Alkhatib O.Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.Nat Commun2021;12:3636

[23]

Bellio C,Foster R.PARP inhibition induces enrichment of DNA repair-proficient CD133 and CD117 positive ovarian cancer stem cells.Mol Cancer Res2019;17:431-45

[24]

He J,Han L,Xie C.Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review).Int J Oncol2021;59:90 PMCID:PMC8562388

[25]

Sharma R,Myers M,Prithviraj P.Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma.J Exp Clin Cancer Res2021;40:186 PMCID:PMC8183071

[26]

Muralikrishnan V,Given TC.A Novel ALDH1A1 inhibitor blocks platinum-induced senescence and stemness in ovarian cancer.Cancers2022;14:3437 PMCID:PMC9318275

[27]

Wang W,Ozes A.Targeting ovarian cancer stem cells by dual inhibition of HOTAIR and DNA methylation.Mol Cancer Ther2021;20:1092-101 PMCID:PMC8172444

[28]

Bellio C,Spriggs DR,Growdon WB.The metabolic inhibitor CPI-613 negates treatment enrichment of ovarian cancer stem cells.Cancers2019;11:1678 PMCID:PMC6896080

[29]

Brown JR,Shank JJ.Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer.JCI Insight2020;5:133247 PMCID:PMC7308054

[30]

Pujade-Lauraine E,Weber B.Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014;32:1302-8.

[31]

Moore KN,Geller MA.Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.Lancet Oncol2019;20:636-48

[32]

Bester AC,Oren YS.Nucleotide deficiency promotes genomic instability in early stages of cancer development.Cell2011;145:435-46 PMCID:PMC3740329

[33]

Ahmed AA,Temple J.Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary.J Pathol2010;221:49-56 PMCID:PMC3262968

[34]

Muller PA.p53 mutations in cancer.Nat Cell Biol2013;15:2-8

[35]

Liu X,van der Gulden H.Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer.Proc Natl Acad Sci U S A2007;104:12111-6 PMCID:PMC1924557

[36]

Na B,Withers T.Therapeutic targeting of BRCA1 and TP53 mutant breast cancer through mutant p53 reactivation.NPJ Breast Cancer2019;5:14 PMCID:PMC6465291

[37]

Dobbelstein M.Exploiting replicative stress to treat cancer.Nat Rev Drug Discov2015;14:405-23

[38]

Origanti S,Munir AZ,Piwnica-Worms H.Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells.Oncogene2013;32:577-88 PMCID:PMC3381958

[39]

Olcina MM,Anbalagan S.Replication stress and chromatin context link ATM activation to a role in DNA replication.Mol Cell2013;52:758-66 PMCID:PMC3898930

[40]

Schleicher EM,Jackson LM,Nicolae CM.The TIP60-ATM axis regulates replication fork stability in BRCA-deficient cells.Oncogenesis2022;11:33 PMCID:PMC9206655

[41]

Blackford AN.ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response.Mol Cell2017;66:801-17

[42]

Zou L.Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.Science2003;300:1542-8

[43]

Costanzo V,Lupardus PJ,Gottesman M.An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication.Mol Cell2003;11:203-13

[44]

George E,Krepler C.A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers.JCI Insight2017;2:e89760 PMCID:PMC5214535

[45]

Hill SJ,Roberts EA.Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids.Cancer Discov2018;8:1404-21 PMCID:PMC6365285

[46]

Kim H,George E.Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models.Nat Commun2020;11:3726 PMCID:PMC7381609

[47]

Biegała Ł,Marczak A.PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway.Biochim Biophys Acta Rev Cancer2021;1876:188633

[48]

Yazinski SA,Buisson R.ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells.Genes Dev2017;31:318-32 PMCID:PMC5358727

[49]

Shah PD,Pagan C.Combination ATR and PARP Inhibitor (CAPRI): A phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer.Gynecol Oncol2021;163:246-53 PMCID:PMC9614917

[50]

Walworth NC.rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint.Science1996;271:353-6

[51]

Zhang Y.Roles of Chk1 in cell biology and cancer therapy.Int J Cancer2014;134:1013-23 PMCID:PMC3852170

[52]

Rundle S,Drew Y.Targeting the ATR-CHK1 axis in cancer therapy.Cancers2017;9:41 PMCID:PMC5447951

[53]

Ciccia A.The DNA damage response: making it safe to play with knives.Mol Cell2010;40:179-204 PMCID:PMC2988877

[54]

Scorah J,Yates JR 3rd,Gillespie D.A conserved proliferating cell nuclear antigen-interacting protein sequence in Chk1 is required for checkpoint function.J Biol Chem2008;283:17250-9 PMCID:PMC2427339

[55]

Taricani L,Parry D.Replication stress activates DNA polymerase alpha-associated Chk1.Cell Cycle2009;8:482-9

[56]

Sørensen CS,Dziegielewski J.The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair.Nat Cell Biol2005;7:195-201

[57]

Zhang YW,Chiang GG.Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway.Mol Cell2005;19:607-18

[58]

Neizer-Ashun F.Reality CHEK: Understanding the biology and clinical potential of CHK1.Cancer Lett2021;497:202-11

[59]

Dent P.Investigational CHK1 inhibitors in early phase clinical trials for the treatment of cancer.Expert Opin Investig Drugs2019;28:1095-100

[60]

King C,McNeely S.LY2606368 causes replication catastrophe and antitumor effects through CHK1-Dependent mechanisms.Mol Cancer Ther2015;14:2004-13

[61]

Angius G,Stati V,Bianco V.Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development.Cancer Chemother Pharmacol2020;85:9-20

[62]

Parmar K,Lazaro JB.The CHK1 Inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition.Clin Cancer Res2019;25:6127-40 PMCID:PMC6801076

[63]

Hong D,Janku F.Phase i study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer.J Clin Oncol2016;34:1764-71 PMCID:PMC5321045

[64]

Lee JM,Zimmer A.Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study.Lancet Oncol2018;19:207-15 PMCID:PMC7366122

[65]

Moore KN,Patel MR.A phase 1b trial of prexasertib in combination with standard-of-care agents in advanced or metastatic cancer.Target Oncol2021;16:569-89

[66]

Do KT,Kelland S.Phase 1 combination study of the CHK1 inhibitor prexasertib and the parp inhibitor olaparib in high-grade serous ovarian cancer and other solid tumors.Clin Cancer Res2021;27:4710-6

[67]

Ngoi NY,Tan DS.Exploiting replicative stress in gynecological cancers as a therapeutic strategy.Int J Gynecol Cancer2020;30:1224-38 PMCID:PMC7418601

[68]

Choi W.Therapeutic targeting of dna damage response in cancer.Int J Mol Sci2022;23:1701 PMCID:PMC8836062

[69]

Slipicevic A,Hellesylt E,Davidson B.Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions.Gynecol Oncol2014;135:118-24

[70]

Aarts M,Garcia-Murillas I.Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1.Cancer Discov2012;2:524-39

[71]

Hirai H,Okada M.Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents.Mol Cancer Ther2009;8:2992-3000

[72]

Rajeshkumar NV,Ottenhof N.MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.Clin Cancer Res2011;17:2799-806 PMCID:PMC3307341

[73]

Bridges KA,Liu H.MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells.Oncotarget2016;7:71660-72 PMCID:PMC5342109

[74]

Hirai H,Okada M.MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil.Cancer Biol Ther2010;9:514-22

[75]

Zhang M,Chen S.WEE1 inhibition by MK1775 as a single-agent therapy inhibits ovarian cancer viability.Oncol Lett2017;14:3580-6 PMCID:PMC5588002

[76]

Leijen S,Pavlick AC.Phase i study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors.J Clin Oncol2016;34:4371-80 PMCID:PMC7845944

[77]

Leijen S,Sonke GS.Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients With TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months.J Clin Oncol2016;34:4354-61

[78]

Oza AM,Grischke EM.A biomarker-enriched, randomized phase ii trial of adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53-mutant ovarian cancer.Clin Cancer Res2020;26:4767-76

[79]

Lheureux S,Bruce JP.Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial.Lancet2021;397:281-92

[80]

Moore KN,Hamilton EP.Adavosertib with chemotherapy in patients with primary platinum-resistant ovarian, fallopian tube, or peritoneal cancer: an open-label, four-arm, phase ii study.Clin Cancer Res2022;28:36-44

[81]

Fang Y,Sun C.Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy.Cancer Cell2019;35:851-867.e7 PMCID:PMC6642675

[82]

Murai J,Das BB.Trapping of PARP1 and PARP2 by clinical PARP inhibitors.Cancer Res2012;72:5588-99 PMCID:PMC3528345

[83]

Farrés J,Martin-Caballero J.PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors.Cell Death Differ2015;22:1144-57 PMCID:PMC4568570

[84]

Illuzzi G,Gill SJ.Preclinical characterization of AZD5305, a next-generation, highly selective parp1 inhibitor and trapper.Clin Cancer Res2022;28:4724-36 PMCID:PMC9623235

[85]

Konstantinopoulos PA,Gulhan D.A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer.Nat Commun2021;12:5574 PMCID:PMC8458434

[86]

Gorski JW,Kolesar JM.CCNE1 Amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer.Diagnostics2020;10:279 PMCID:PMC7277958

[87]

Xu H,Kinose Y.CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models.Cell Rep Med2021;2:100394 PMCID:PMC8484689

[88]

Zhang J,Berner J.Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.Cell2023;186:2361-2379.e25 PMCID:PMC10225361

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/