Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer

Sergi Benavente

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) : 291 -313.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (2) :291 -313. DOI: 10.20517/cdr.2022.141
review-article

Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer

Author information +
History +
PDF

Abstract

Despite intensive efforts and refined techniques, overall survival in HPV-negative head and neck cancer remains poor. Robust immune priming is required to elicit a strong and durable antitumor immune response in immunologically cold and excluded tumors like HPV-negative head and neck cancer. This review highlights how the tumor microenvironment could be affected by different immune and stromal cell types, weighs the need to integrate metabolic regulation of the tumor microenvironment into cancer treatment strategies and summarizes the emerging clinical applicability of personalized immunotherapeutic strategies in HPV-negative head and neck cancer.

Keywords

Tumor microenvironments / head and neck cancer / SBRT / immunotherapy / metabolic reprogramming / radiotherapy / HPV-negative

Cite this article

Download citation ▾
Sergi Benavente. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. Cancer Drug Resistance, 2023, 6(2): 291-313 DOI:10.20517/cdr.2022.141

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Estimated number of new cases from 2020 to 2040, Incidence, Both sexes, age [0-85+]. Africa + Latin America and Caribbean + Northern America + Europe + Oceania + Asia. Available from: https://gco.iarc.fr/tomorrow/en/dataviz/tables?mode=cancer&group_populations=1. [Last accessed on 29 May 2023]

[3]

Chow LQM.Head and neck cancer.N Engl J Med2020;382:60-72

[4]

Osazuwa-Peters N,Zhao L.Suicide risk among cancer survivors: Head and neck versus other cancers.Cancer2018;124:4072-9

[5]

Giralt J,Arguis M.Optimizing approaches to head and neck cancer: strengths and weaknesses in multidisciplinary treatments of locally advanced disease.Ann Oncol2008;19 Suppl 7:vii195-9

[6]

Machiels J-P,Golusinski W,Licitra L.Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann Oncol2020;31:1462-75.

[7]

Orlandi E,Tombolini V.Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer.Oral Oncol2019;99:104453

[8]

Ang KK,Wheeler R.Human papillomavirus and survival of patients with oropharyngeal cancer.NEJM2010;363:24-35 PMCID:PMC2943767

[9]

Golusiński W.Functional organ preservation surgery in head and neck cancer: transoral robotic surgery and beyond.Front Oncol2019;9:293 PMCID:PMC6479210

[10]

Lee N,Garden AS.Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225.J Clin Oncol2009;27:3684-90 PMCID:PMC2720082

[11]

Nichols AC,Prisman E.Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial.Lancet Oncol2019;20:1349-59

[12]

Nenclares P,Tam K,St John M.Introducing checkpoint inhibitors into the curative setting of head and neck cancers: lessons learned, future considerations.Am Soc Clin Oncol Educ Book2022;42:1-16

[13]

Ferris RL,Fayette J.Nivolumab for recurrent squamous-cell carcinoma of the head and neck.N Engl J Med2016;375:1856-67 PMCID:PMC5564292

[14]

Cohen EEW,Le Tourneau C.KEYNOTE-040 investigatorsPembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study.Lancet2019;393:156-67

[15]

Burtness B,Greil R.KEYNOTE-048 InvestigatorsPembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study.Lancet2019;394:1915-28

[16]

Riaz N,Pei X.Precision radiotherapy: reduction in radiation for oropharyngeal cancer in the 30 ROC trial.J Natl Cancer Inst2021;113:742-51 PMCID:PMC8168141

[17]

Kimple RJ,Blitzer GC.Enhanced radiation sensitivity in HPV-positive head and neck cancer.Cancer Res2013;73:4791-800 PMCID:PMC3732540

[18]

Hill RM,Parsons JL.Overcoming the impact of hypoxia in driving radiotherapy resistance in head and neck squamous cell carcinoma.Cancers2022;14:4130 PMCID:PMC9454974

[19]

Menegakis A,Vennin C.Resistance of hypoxic cells to ionizing radiation is mediated in part via hypoxia-induced quiescence.Cells2021;10:610 PMCID:PMC7998378

[20]

Johnson DE,Leemans CR,Bauman JE.Head and neck squamous cell carcinoma.Nat Rev Dis Primers2020;6:92 PMCID:PMC7944998

[21]

D’Cruz AK,Kapre N.Head and neck disease management groupElective versus therapeutic neck dissection in node-negative oral cancer.N Engl J Med2015;373:521-9

[22]

Koyfman SA,Crook D.Management of the neck in squamous cell carcinoma of the oral cavity and oropharynx: ASCO clinical practice guideline.J Clin Oncol2019;37:1753-74 PMCID:PMC7098829

[23]

Sher DJ,Shah JL.Prospective phase 2 study of radiation therapy dose and volume de-escalation for elective neck treatment of oropharyngeal and laryngeal cancer.Int J Radiat Oncol Biol Phys2021;109:932-40

[24]

Deschuymer S,Duprez F.Randomized clinical trial on reduction of radiotherapy dose to the elective neck in head and neck squamous cell carcinoma; update of the long-term tumor outcome.Radiother Oncol2020;143:24-9

[25]

Marciscano AE,Nirschl TR.Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy.Clin Cancer Res2018;24:5058-71 PMCID:PMC6532976

[26]

Lund AW.Immune Potential Untapped: Leveraging the Lymphatic System for Cancer Immunotherapy.Cancer Immunol Res2022;10:1042-6 PMCID:PMC9673990

[27]

Bois H, Heim TA, Lund AW. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity.Sci Immunol2021;6:eabg3551 PMCID:PMC8628268

[28]

Pereira ER,Seano G.Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice.Science2018;359:1403-7 PMCID:PMC6002772

[29]

Ruffin AT,Vujanovic L,Ferris RL.Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment.Nat Rev Cancer2023;23:173-88 PMCID:PMC9992112

[30]

Saddawi-Konefka R,Sumner W,Mell LK.Defining the role of immunotherapy in the curative treatment of locoregionally advanced head and neck cancer: promises, challenges, and opportunities.Front Oncol2021;11:738626 PMCID:PMC8490924

[31]

Kim HAJ,Shaikh MH.All HPV-negative head and neck cancers are not the same: Analysis of the TCGA dataset reveals that anatomical sites have distinct mutation, transcriptome, hypoxia, and tumor microenvironment profiles.Oral Oncol2021;116:105260

[32]

Bhandari V,Liu LY.Molecular landmarks of tumor hypoxia across cancer types.Nat Genet2019;51:308-18

[33]

Van den Bossche V,Vara-Messler M.Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine.Drug Resist Updat2022;60:100806

[34]

Folaron M,Duvvuri U,Seshadri M.Profiling the stromal and vascular heterogeneity in patient-derived xenograft models of head and neck cancer: impact on therapeutic response.Cancers2019;11:951 PMCID:PMC6679003

[35]

Cai MC,Cao M.T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment.J Pathol2020;251:147-59

[36]

Beltra JC,Abdel-Hakeem MS.Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms.Immunity2020;52:825-841.e8 PMCID:PMC8360766

[37]

Zhao X,Xue HH.TCF1 in T cell immunity: a broadened frontier.Nat Rev Immunol2022;22:147-57

[38]

Zehn D,Lugli E,Oxenius A.‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses.Nat Immunol2022;23:836-47

[39]

Zhang Z,Chen H.Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy.EBioMedicine2022;83:104207 PMCID:PMC9382263

[40]

Merad M,Helft J,Mortha A.The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting.Annu Rev Immunol2013;31:563-604 PMCID:PMC3853342

[41]

Zagorulya M,Spranger S.Impact of anatomic site on antigen-presenting cells in cancer.J Immunother Cancer2020;8:e001204 PMCID:PMC7537336

[42]

Darragh LB.Amateur antigen-presenting cells in the tumor microenvironment.Mol Carcinog2022;61:153-64 PMCID:PMC9899420

[43]

Seliger B,Ferrone S.HLA class II antigen-processing pathway in tumors: molecular defects and clinical relevance.Oncoimmunology2017;6:e1171447 PMCID:PMC5353941

[44]

Näsman A,Marklund L.HLA class I and II expression in oropharyngeal squamous cell carcinoma in relation to tumor HPV status and clinical outcome.PLoS One2013;8:e77025 PMCID:PMC3794938

[45]

Thiery J.Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions.Explor Target Antitumor Ther2022;3:598-629 PMCID:PMC9630350

[46]

Puram SV,Parikh AS.Single-Cell Transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer.Cell2017;171:1611-1624.e24 PMCID:PMC5878932

[47]

Obradovic A,Korrer M.Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer.Clin Cancer Res2022;28:2094-109 PMCID:PMC9161438

[48]

André P,Soulas C.Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells.Cell2018;175:1731-1743.e13 PMCID:PMC6292840

[49]

Salomé B,Ranti D.NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer.Cancer Cell2022;40:1027-1043.e9 PMCID:PMC9479122

[50]

van Montfoort N,Korrer MJ.NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines.Cell2018;175:1744-1755.e15 PMCID:PMC6354585

[51]

Battaglia NG,Uccello TP.Combination of NKG2A and PD-1 blockade improves radiotherapy response in radioresistant tumors.J Immunol2022;209:629-40 PMCID:PMC9339479

[52]

Chandler C,Buckanovich R.The double edge sword of fibrosis in cancer.Transl Res2019;209:55-67 PMCID:PMC6545239

[53]

Dufrusine B,Capone E.BAG3 induces fibroblasts to release key cytokines involved in pancreatic cell migration.J Cell Biochem2022;123:65-76 PMCID:PMC9297949

[54]

Chen X.Turning foes to friends: targeting cancer-associated fibroblasts.Nat Rev Drug Discov2019;18:99-115

[55]

Marco M, Turco MC, Marzullo L. BAG3 in tumor resistance to therapy.Trends Cancer2020;6:985-8

[56]

De Marco M,Reppucci F.BAG3 induces α-SMA expression in human fibroblasts and its over-expression correlates with poorer survival in fibrotic cancer patients.J Cell Biochem2022;123:91-101 PMCID:PMC9297854

[57]

Bronte V,Chen SH.Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.Nat Commun2016;7:12150 PMCID:PMC4935811

[58]

Bailey CM,Liu M.Targeting HIF-1α abrogates PD-L1-mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues.J Clin Invest2022;132 PMCID:PMC9057613

[59]

Tumino N,Martini S.Polymorphonuclear myeloid-derived suppressor cells are abundant in peripheral blood of cancer patients and suppress natural killer cell anti-tumor activity.Front Immunol2021;12:803014 PMCID:PMC8805733

[60]

Choi J,Ahn YO.CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function.Tumour Biol2012;33:121-9

[61]

Zhou X,Liu H.PMN-MDSCs accumulation induced by CXCL1 promotes CD8+ T cells exhaustion in gastric cancer.Cancer Lett2022;532:215598

[62]

Tsai MS,Lu CH.The prognosis of head and neck squamous cell carcinoma related to immunosuppressive tumor microenvironment regulated by IL-6 signaling.Oral Oncol2019;91:47-55

[63]

Sridharan V,Lynch SA.Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer.Br J Cancer2016;115:252-60 PMCID:PMC4947695

[64]

Telarovic I,Pruschy M.Interfering with Tumor Hypoxia for Radiotherapy Optimization.J Exp Clin Cancer Res2021;40:197 PMCID:PMC8215813

[65]

Noman MZ,Janji B.PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation.J Exp Med2014;211:781-90 PMCID:PMC4010891

[66]

Ohl K.Reactive oxygen species as regulators of MDSC-mediated immune suppression.Front Immunol2018;9:2499 PMCID:PMC6218613

[67]

Sprouse ML,Boral D.PMN-MDSCs enhance CTC metastatic properties through reciprocal interactions via ROS/Notch/Nodal signaling.Int J Mol Sci2019;20:1916 PMCID:PMC6514876

[68]

Jiménez-Cortegana C,Klapp V,Galluzzi L.Myeloid-derived suppressor cells and radiotherapy.Cancer Immunol Res2022;10:545-57

[69]

Muroyama Y,Kochel CM.Stereotactic radiotherapy increases functionally suppressive regulatory t cells in the tumor microenvironment.Cancer Immunol Res2017;5:992-1004 PMCID:PMC5793220

[70]

Boustani J,Martin E.Cisplatin-based chemoradiation decreases telomerase-specific CD4 TH1 response but increases immune suppressive cells in peripheral blood.BMC Immunol2021;22:38 PMCID:PMC8212531

[71]

Twyman-Saint Victor C,Maity A.Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.Nature2015;520:373-7 PMCID:PMC4401634

[72]

Oweida AJ,Phan A.STAT3 modulation of regulatory T cells in response to radiation therapy in head and neck cancer.J Natl Cancer Inst2019;111:1339-49 PMCID:PMC6910208

[73]

Oweida A,Phan A.Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-Cell infiltration.Clin Cancer Res2018;24:5368-80 PMCID:PMC6886391

[74]

Knitz MW,Darragh LB.Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis.J Immunother Cancer2021;9:e001955 PMCID:PMC8061827

[75]

Akhmetzyanova I,Littwitz-Salomon E.CD137 agonist therapy can reprogram regulatory T cells into cytotoxic CD4+ T cells with antitumor activity.J Immunol2016;196:484-92

[76]

Kondoh N.The role of immune modulatory cytokines in the tumor microenvironments of head and neck squamous cell carcinomas.Cancers2022;14:2884 PMCID:PMC9221278

[77]

Karakasheva TA,Tang Q.IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment.Cancer Res2018;78:4957-70 PMCID:PMC6125177

[78]

Dar AA,Pradhan TN,D'Cruz AK.Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma.Cancer Immunol Immunother2020;69:1071-86

[79]

Koucký V,Táborská E.The cytokine milieu compromises functional capacity of tumor-infiltrating plasmacytoid dendritic cells in HPV-negative but not in HPV-positive HNSCC.Cancer Immunol Immunother2021;70:2545-57

[80]

Sotirović J,Vojvodić D.Serum cytokine profile of laryngeal squamous cell carcinoma patients.J Laryngol Otol2017;131:455-61

[81]

Batlle E.Transforming growth factor-β signaling in immunity and cancer.Immunity2019;50:924-40 PMCID:PMC7507121

[82]

Strait AA,Hall SC.Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma.Commun Biol2021;4:1005 PMCID:PMC8387430

[83]

Redman JM,Robbins Y.Enhanced neoepitope-specific immunity following neoadjuvant PD-L1 and TGF-β blockade in HPV-unrelated head and neck cancer.J Clin Invest2022;132 PMCID:PMC9479764

[84]

Drouillard D,Dwinell MB.Physiology of chemokines in the cancer microenvironment.Am J Physiol Cell Physiol2023;324:C167-82 PMCID:PMC9829481

[85]

Hegde PS.Top 10 challenges in cancer immunotherapy.Immunity2020;52:17-35

[86]

Davoli T,Wooten EC.Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy.Science2017;355 PMCID:PMC5592794

[87]

William WN Jr,Bianchi JJ.Immune evasion in HPV- head and neck precancer-cancer transition is driven by an aneuploid switch involving chromosome 9p loss.Proc Natl Acad Sci U S A2021;118 PMCID:PMC8126856

[88]

Han G,Hao D.9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy.Nat Commun2021;12:5606 PMCID:PMC8460828

[89]

Zhao X,William WN Jr.Somatic 9p24.1 alterations in HPV- head and neck squamous cancer dictate immune microenvironment and anti-PD-1 checkpoint inhibitor activity.Proc Natl Acad Sci U S A2022;119:e2213835119 PMCID:PMC9704728

[90]

Litchfield K,Puttick C.Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition.Cell2021;184:596-614.e14 PMCID:PMC7933824

[91]

Read GH,Vlashi E.Metabolic response to radiation therapy in cancer.Mol Carcinog2022;61:200-24 PMCID:PMC10187995

[92]

Lewis JE.Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance.Nat Commun2021;12:2700 PMCID:PMC8113601

[93]

Gyamfi J,Choi J.Cancer as a metabolic disorder.Int J Mol Sci2022;23:1155 PMCID:PMC8835572

[94]

Mittal A,Sarangi I,Lawrence TS.Radiotherapy-induced metabolic hallmarks in the tumor microenvironment.Trends Cancer2022;8:855-69

[95]

Vaupel P,Mayer A.The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.Int J Radiat Biol2019;95:912-9

[96]

Pavlova NN,Thompson CB.The hallmarks of cancer metabolism: Still emerging.Cell Metab2022;34:355-77 PMCID:PMC8891094

[97]

Yan SX,Zhou SH.Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma.Int J Med Sci2013;10:1375-86 PMCID:PMC3753417

[98]

Mims J,Bharadwaj MS.Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer.Radiat Res2015;183:291-304 PMCID:PMC4465128

[99]

Jung YS,Huang W.HPV-associated differential regulation of tumor metabolism in oropharyngeal head and neck cancer.Oncotarget2017;8:51530-41 PMCID:PMC5584266

[100]

Matsuoka Y,Kawahara K.The antioxidative stress regulator Nrf2 potentiates radioresistance of oral squamous cell carcinoma accompanied with metabolic modulation.Lab Invest2022;102:896-907 PMCID:PMC9309095

[101]

Leu M,Pilavakis Y.Monocarboxylate transporter-1 (MCT1) protein expression in head and neck cancer affects clinical outcome.Sci Rep2021;11:4578 PMCID:PMC7907348

[102]

Rabinowitz JD.Lactate: the ugly duckling of energy metabolism.Nat Metab2020;2:566-71 PMCID:PMC7983055

[103]

Gao Y,Liu G,Yuan Y.Tumor microenvironment: lactic acid promotes tumor development.J Immunol Res2022;2022:3119375 PMCID:PMC9207018

[104]

Apostolova P.Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment.Trends Immunol2022;43:969-77

[105]

Kaymak I,Duimstra LR.Carbon source availability drives nutrient utilization in CD8+ T cells.Cell Metab2022;34:1298-1311.e6 PMCID:PMC10068808

[106]

Feng Q,Yu X.Lactate increases stemness of CD8+T cells to augment anti-tumor immunity.Nat Commun2022;13:4981 PMCID:PMC9448806

[107]

Choi JE,Ferrer CM.A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma.Nat Metab2021;3:182-95 PMCID:PMC7954080

[108]

Tang Y,Chen Y.Metabolic adaptation-mediated cancer survival and progression in oxidative stress.Antioxidants2022;11:1324 PMCID:PMC9311581

[109]

Sitthideatphaiboon P,Negrao MV.STK11/LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition.Clin Cancer Res2021;27:1720-33 PMCID:PMC8138942

[110]

Claiborne MD.Differential glutamine metabolism in the tumor microenvironment - studies in diversity and heterogeneity: a mini-review.Front Oncol2022;12:1011191 PMCID:PMC9531032

[111]

Best SA,Sethumadhavan S.Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.Cell Metab2022;34:874-887.e6

[112]

Lang X,Wang W.Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11.Cancer Discov2019;9:1673-85 PMCID:PMC6891128

[113]

Lee J.Ferroptosis induction via targeting metabolic alterations in head and neck cancer.Crit Rev Oncol Hematol2023;181:103887

[114]

Wang L,Fu J,Yuan J.The role of tumour metabolism in cisplatin resistance.Front Mol Biosci2021;8:691795 PMCID:PMC8261055

[115]

Moretton A.Interplay between cellular metabolism and the DNA damage response in cancer.Cancers2020;12:2051 PMCID:PMC7463900

[116]

Ludwig N,Reichert TE,Whiteside TL.Purine metabolites in tumor-derived exosomes may facilitate immune escape of head and neck squamous cell carcinoma.Cancers2020;12:1602 PMCID:PMC7352909

[117]

Jiang Z,Li Y,Hung MC.Cancer Cell Metabolism Bolsters Immunotherapy Resistance by Promoting an Immunosuppressive Tumor Microenvironment.Front Oncol2020;10:1197 PMCID:PMC7387712

[118]

Yegutkin GG.ATP and adenosine metabolism in cancer: exploitation for therapeutic gain.Pharmacol Rev2022;74:797-822 PMCID:PMC9553103

[119]

Ma SR,Liu JF.Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma.Mol Cancer2017;16:99 PMCID:PMC5461710

[120]

Deng WW,Ma SR.Specific blockade CD73 alters the “exhausted” phenotype of T cells in head and neck squamous cell carcinoma.Int J Cancer2018;143:1494-504

[121]

Darragh LB,Karam SD.Overcoming resistance to combination radiation-immunotherapy: a focus on contributing pathways within the tumor microenvironment.Front Immunol2018;9:3154 PMCID:PMC6366147

[122]

Augustin RC,Naing A,Bao R.Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy.J Immunother Cancer2022;10:e004089 PMCID:PMC8830302

[123]

Kepp O,Yamazaki T.ATP and cancer immunosurveillance.EMBO J2021;40:e108130 PMCID:PMC8246257

[124]

O’Sullivan D,Huang SC.Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development.Immunity2018;49:375-6 PMCID:PMC4120664

[125]

Pascual G,Mejetta S.Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature2017;541:41-5

[126]

Corbet C,Santiago de Jesus JP.TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells.Nat Commun2020;11:454 PMCID:PMC6978517

[127]

Lei G,Koppula P.The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression.Cell Res2020;30:146-62 PMCID:PMC7015061

[128]

Pearson AN,Jiang L,Green MD.Contribution of lipid oxidation and ferroptosis to radiotherapy efficacy.Int J Mol Sci2021;22:12603 PMCID:PMC8622791

[129]

Roh JL,Jang H.Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.Redox Biol2017;11:254-62 PMCID:PMC5198738

[130]

Okazaki S,Yamasaki J.Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma.Cancer Sci2019;110:3453-63 PMCID:PMC6825010

[131]

Kim R,Markosyan N.Ferroptosis of tumour neutrophils causes immune suppression in cancer.Nature2022;612:338-46 PMCID:PMC9875862

[132]

Taylor CT.Regulation of immunity and inflammation by hypoxia in immunological niches.Nat Rev Immunol2017;17:774-85 PMCID:PMC5799081

[133]

Chung SW,Suk JS.Overcoming physical stromal barriers to cancer immunotherapy.Drug Deliv Transl Res2021;11:2430-47 PMCID:PMC8571040

[134]

Lee P,Simon MC.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond.Nat Rev Mol Cell Biol2020;21:268-83 PMCID:PMC7222024

[135]

Godet I,Ju JA,Wang G.Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis.Nat Commun2019;10:4862 PMCID:PMC6813355

[136]

Butturini E,Boriero D.Tumor dormancy and interplay with hypoxic tumor microenvironment.Int J Mol Sci2019;20:4305 PMCID:PMC6747268

[137]

Rühle A,Wiedenmann N.Hypoxia dynamics on FMISO-PET in combination with PD-1/PD-L1 expression has an impact on the clinical outcome of patients with head-and-neck squamous cell carcinoma undergoing chemoradiation.Theranostics2020;10:9395-406 PMCID:PMC7415814

[138]

Nicolay NH,Wiedenmann N.Lymphocyte Infiltration Determines the Hypoxia-Dependent Response to Definitive Chemoradiation in Head-and-Neck Cancer: Results from a Prospective Imaging Trial.J Nucl Med2021;62:471-8 PMCID:PMC8049369

[139]

Notarbartolo S.Human T lymphocytes at tumor sites.Semin Immunopathol2022;44:883-901 PMCID:PMC9668216

[140]

Zagorulya M.Once upon a prime: DCs shape cancer immunity.Trends Cancer2023;9:172-84

[141]

Saddawi-Konefka R,Faraji F.Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC.Nat Commun2022;13:4298

[142]

Engelmann L,Koerich Laureano N.Organotypic Co-cultures as a novel 3D model for head and neck squamous cell carcinoma.Cancers2020;12:2330 PMCID:PMC7463661

[143]

Lugo-Cintrón KM,Humayun M.Primary head and neck tumour-derived fibroblasts promote lymphangiogenesis in a lymphatic organotypic co-culture model.EBioMedicine2021;73:103634 PMCID:PMC8528684

[144]

Miserocchi G,De Vita A.Three-dimensional collagen-based scaffold model to study the microenvironment and drug-resistance mechanisms of oropharyngeal squamous cell carcinomas.Cancer Biol Med2021;18:502-16 PMCID:PMC8185858

[145]

Mattei F,Mencattini A.Oncoimmunology meets organs-on-chip.Front Mol Biosci2021;8:627454 PMCID:PMC8032996

[146]

Sontheimer-Phelps A,Ingber DE.Modelling cancer in microfluidic human organs-on-chips.Nat Rev Cancer2019;19:65-81

[147]

Riaz N,Makarov V.Tumor and microenvironment evolution during immunotherapy with nivolumab.Cell2017;171:934-949.e16 PMCID:PMC5685550

[148]

Stafford M.The neoadjuvant paradigm reinvigorated: a review of pre-surgical immunotherapy in HNSCC.Cancers Head Neck2020;5:4 PMCID:PMC7077151

[149]

Farlow JL,Swiecicki PL,Spector ME.Window of opportunity trials in head and neck cancer.J Cancer Metastasis Treat2019;5:18 PMCID:PMC6638557

[150]

Darragh LB,Hu J.A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC.Nat Cancer2022;3:1300-17 PMCID:PMC9701140

[151]

Vaziri Fard E,Wang XI.Tumor-infiltrating lymphocyte volume is a better predictor of disease-free survival than stromal tumor-infiltrating lymphocytes in invasive breast carcinoma.Am J Clin Pathol2019;152:656-65

[152]

Vos JL,Krijgsman O.Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma.Nat Commun2021;12:7348 PMCID:PMC8695578

[153]

Lee CK,Jang C.Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation.Science2019;363:644-9

[154]

Li M,Tang YJ,Tang YL.Fatty acid oxidation: driver of lymph node metastasis.Cancer Cell Int2021;21:339 PMCID:PMC8254237

[155]

Gillot L,Rouaud L,Noël A.The pre-metastatic niche in lymph nodes: formation and characteristics.Cell Mol Life Sci2021;78:5987-6002 PMCID:PMC8316194

[156]

Wong BW,Zecchin A.The role of fatty acid β-oxidation in lymphangiogenesis.Nature2017;542:49-54

[157]

Zhang Q,Mao C.Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration.Mol Immunol2018;94:27-35 PMCID:PMC5801116

[158]

Ma Q,Ikenberg K.Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread.Sci Adv2018;4:eaat4758 PMCID:PMC6082649

[159]

Iwamoto H,Yang Y.Cancer lipid metabolism confers antiangiogenic drug resistance.Cell Metab2018;28:104-117.e5

[160]

Reticker-Flynn NE,Belk JA.Lymph node colonization induces tumor-immune tolerance to promote distant metastasis.Cell2022;185:1924-1942.e23 PMCID:PMC9149144

[161]

Wang W,Choi JE.CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019;569:270-4 PMCID:PMC6533917

[162]

Chen X,Kroemer G.Broadening horizons: the role of ferroptosis in cancer.Nat Rev Clin Oncol2021;18:280-96

[163]

Park EM,Bhutiani N,Zitvogel L.Targeting the gut and tumor microbiota in cancer.Nat Med2022;28:690-703

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/