Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment

Yoko Tabe , Marina Konopleva

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) : 138 -50.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) :138 -50. DOI: 10.20517/cdr.2022.133
review-article

Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment

Author information +
History +
PDF

Abstract

In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.

Keywords

Bone marrow microenvironment / acute myeloid leukemia / mitochondria / oxidative phosphorylation / fatty acid oxidation / energy metabolism

Cite this article

Download citation ▾
Yoko Tabe, Marina Konopleva. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. Cancer Drug Resistance, 2023, 6(1): 138-50 DOI:10.20517/cdr.2022.133

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hassan M.Hematologic malignancies in elderly patients.Haematologica2014;99:1124-7

[2]

Jones RG.Tumor suppressors and cell metabolism: a recipe for cancer growth.Genes Dev2009;23:537-48

[3]

Wilson WR.Targeting hypoxia in cancer therapy.Nat Rev Cancer2011;11:393-410

[4]

Raaijmakers MH.Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system.Haematologica2011;96:1041-8

[5]

Ho TC,Stevens BM.Evolution of acute myelogenous leukemia stem cell properties after treatment and progression.Blood2016;128:1671-8

[6]

Robinson AJ,Darley RL.Reactive oxygen species rewires metabolic activity in acute myeloid leukemia.Front Oncol2021;11:632623

[7]

Romo-González M,Hernández-Hernández Á.Reactive oxygen species and metabolism in leukemia: a dangerous liaison.Front Immunol2022;13:889875

[8]

Tabe Y.Advances in understanding the leukaemia microenvironment.Br J Haematol2014;164:767-78

[9]

Zhao Y,Tan M.Targeting cellular metabolism to improve cancer therapeutics.Cell Death Dis2013;4:e532

[10]

Molina JR,Protopopova M.An inhibitor of oxidative phosphorylation exploits cancer vulnerability.Nat Med2018;24:1036-46

[11]

Hail N.Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state.Mol Nutr Food Res2009;53:49-67

[12]

Benito J,Szymanska B.Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104.PLoS One2011;6:e23108

[13]

Benito J,Konopleva M.Targeting hypoxia in the leukemia microenvironment.Int J Hematol Oncol2013;2:279-88

[14]

Rytelewski M,Baran N.Inhibition of oxidative phosphorylation reverses bone marrow hypoxia visualized in imageable syngeneic B-all mouse model.Front Oncol2020;10:991

[15]

Frolova O,Benito JM.Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment.Cancer Biol Ther2012;13:858-70

[16]

Gut P.The nexus of chromatin regulation and intermediary metabolism.Nature2013;502:489-98

[17]

Bonnet D.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med1997;3:730-7

[18]

Lapidot T,Vormoor J.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature1994;367:645-8

[19]

Viale A,Lyssiotis CA.Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.Nature2014;514:628-32

[20]

Lee KM,Balko JM.MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation.Cell Metab2017;26:633-47.e7

[21]

Lagadinou ED,Callahan K.BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.Cell Stem Cell2013;12:329-41

[22]

Eppert K,Lechman ER.Stem cell gene expression programs influence clinical outcome in human leukemia.Nat Med2011;17:1086-93

[23]

Jung N,Gentles AJ,Feinberg AP.An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis.Nat Commun2015;6:8489

[24]

George J,Young K.Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells.Nat Commun2016;7:12166

[25]

Ng SW,Kennedy JA.A 17-gene stemness score for rapid determination of risk in acute leukaemia.Nature2016;540:433-7

[26]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[27]

Raffel S,Falcone M.Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells.Blood2020;136:1507-19

[28]

Harris MH.The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability.Cell Death Differ2000;7:1182-91

[29]

Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange.Mol Cell1999;3:159-67

[30]

Manfredi G,Oca-Cossio JA.BCL-2 improves oxidative phosphorylation and modulates adenine nucleotide translocation in mitochondria of cells harboring mutant mtDNA.J Biol Chem2003;278:5639-45

[31]

Johnson EA,Mandrekar SJ.Phase III randomized, double-blind study of maintenance CAI or placebo in patients with advanced non-small cell lung cancer (NSCLC) after completion of initial therapy (NCCTG 97-24-51).Lung Cancer2008;60:200-7

[32]

Ellinghaus P,Unterschemmann K.BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I.Cancer Med2013;2:611-24

[33]

Tan AS,Dong LF.Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.Cell Metab2015;21:81-94

[34]

Saito K,Yang H.Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition.Blood Adv2021;5:4233-55

[35]

Abounit S,Zurzolo C.Identification and characterization of tunneling nanotubes for intercellular trafficking.Curr Protoc Cell Biol2015;67:12.0.1-.0.21

[36]

Biran A,Gal H.Senescent cells communicate via intercellular protein transfer.Genes Dev2015;29:791-802

[37]

Frei DM,Rios-Mondragon I.Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer.Sci Rep2015;5:12879

[38]

Ridley AJ.Rho GTPase signalling in cell migration.Curr Opin Cell Biol2015;36:103-12

[39]

Mistry JJ,Moore JA.ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection.Proc Natl Acad Sci USA2019;116:24610-9

[40]

Mizushima N.Autophagy: renovation of cells and tissues.Cell2011;147:728-41

[41]

Kim DY,Kim YJ.Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation.Korean J Physiol Pharmacol2018;22:203-13

[42]

Toyama EQ,Courchet J.Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress.Science2016;351:275-81

[43]

Cai J,Huang Y.ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells.Cell Death Dis2016;7:e2459

[44]

Pei S,Adane B.AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells.Cell Stem Cell2018;23:86-100.e6

[45]

Wallace DC.Mitochondria and cancer: warburg addressed.Cold Spring Harb Symp Quant Biol2005;70:363-74

[46]

Marlein CR,Piddock RE.NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.Blood2017;130:1649-60

[47]

Jones CL,D'Alessandro A.Inhibition of amino acid metabolism selectively targets human leukemia stem cells.Cancer Cell2018;34:724-40.e4

[48]

Schimmer AD.Novel mitochondrial mechanisms of cytarabine resistance in primary AML cells.Cancer Discov2017;7:670-2

[49]

Syed N,Janczar K.Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma.Cell Death Dis2013;4:e458

[50]

Xing P,Ren Z.Roles of low-density lipoprotein receptor-related protein 1 in tumors.Chin J Cancer2016;35:6

[51]

Grosso RA,Sanchez MC,Colombo MI.Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor.Biosci Rep2019;39

[52]

Evans JM,Emslie-Smith AM,Morris AD.Metformin and reduced risk of cancer in diabetic patients.BMJ2005;330:1304-5

[53]

Andrzejewski S,Pollak M.Metformin directly acts on mitochondria to alter cellular bioenergetics.Cancer Metab2014;2:12

[54]

Scotland S,Skuli N.Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells.Leukemia2013;27:2129-38

[55]

Stuart SD,Gupta S.A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process.Cancer Metab2014;2:4

[56]

Zachar Z,Maturo C.Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo.J Mol Med2011;89:1137-48

[57]

Pardee TS,Buyse M,Cortes J.Devimistat in combination with high dose cytarabine and mitoxantrone compared with high dose cytarabine and mitoxantrone in older patients with relapsed/refractory acute myeloid leukemia: ARMADA 2000 Phase III study.Future Oncol2019;15:3197-208

[58]

Anderson R,Isom S.Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia.Nat Commun2022;13:1673

[59]

Behan JW,Proektor MP.Adipocytes impair leukemia treatment in mice.Cancer Res2009;69:7867-74

[60]

Justesen J,Ebbesen EN,Steiniche T.Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis.Biogerontology2001;2:165-71

[61]

Magome T,Holtan SG.Whole-body distribution of leukemia and functional total marrow irradiation based on FLT-PET and dual-energy CT.Mol Imaging2017;16:1536012117732203

[62]

Islam MS,Takahashi Y.Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells.J Radiat Res2015;56:269-77

[63]

Nieman KM,Penicka CV.Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth.Nat Med2011;17:1498-503

[64]

Carracedo A,Pandolfi PP.Cancer metabolism: fatty acid oxidation in the limelight.Nat Rev Cancer2013;13:227-32

[65]

Pepino MY,Samovski D.Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism.Annu Rev Nutr2014;34:281-303

[66]

Farge T,de Toni F.Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism.Cancer Discov2017;7:716-35

[67]

Ricciardi MR,Allegretti M.Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias.Blood2015;126:1925-9

[68]

Itoh T,Amin K.Structural basis for the activation of PPARgamma by oxidized fatty acids.Nat Struct Mol Biol2008;15:924-31

[69]

Tabe Y,Saitoh K.Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells.Cancer Res2017;77:1453-64

[70]

Ye H,Khan N.Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche.Cell Stem Cell2016;19:23-37

[71]

Shafat MS,Mohr S.Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment.Blood2017;129:1320-32

[72]

Pascual G,Mejetta S.Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature2017;541:41-5

[73]

Balaban S,Lee LS.Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration.Cancer Metab2017;5:1

[74]

Zhang M,Bowman RL.Adipocyte-derived lipids mediate melanoma progression via FATP proteins.Cancer Discov2018;8:1006-25

[75]

Nieman KM,Van Houten B.Adipose tissue and adipocytes support tumorigenesis and metastasis.Biochim Biophys Acta2013;1831:1533-41

[76]

Carmen GY.Signalling mechanisms regulating lipolysis.Cell Signal2006;18:401-8

[77]

Sengenes C,Hauner H.Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes.J Biol Chem2003;278:48617-26

[78]

Yamauchi T,Minokoshi Y.Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.Nat Med2002;8:1288-95

[79]

Alers S,Wesselborg S.Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.Mol Cell Biol2012;32:2-11

[80]

Cawthorn WP,Learman BS.Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction.Cell Metab2014;20:368-75

[81]

Medina EA,Polusani SR,Velagaleti GV.PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells.Leukemia2014;28:2080-9

[82]

Ma R,Peng Y.Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells.Acta Biochim Biophys Sin2021;53:775-83

[83]

Chaffer CL,Scheel C.Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state.Proc Natl Acad Sci USA2011;108:7950-5

[84]

Samudio I,Fiegl M.Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction.J Clin Invest2010;120:142-56

[85]

Jones CL,D'Alessandro A.Inhibition of amino acid metabolism selectively targets human leukemia stem cells.Cancer Cell2019;35:333-5

[86]

Stevens BM,Pollyea DA.Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.Nat Cancer2020;1:1176-87

[87]

Tabe Y,Yang H.Inhibition of FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine.Sci Rep2018;8:16837

[88]

Pike LS,Croteau NJ,Wu M.Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells.Biochim Biophys Acta2011;1807:726-34

[89]

Schreurs M,van der Leij FR.Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome.Obes Rev2010;11:380-8

[90]

Shim JK,Yoon SJ.Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres.Cancer Cell Int2022;22:309

[91]

Wang T,Lee H.JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance.Cell Metab2018;27:1357

[92]

Dhakal B,Li R.The antianginal drug perhexiline displays cytotoxicity against colorectal cancer cells in vitro: a potential for drug repurposing.Cancers2022;14:1043

[93]

Lee EA,Rota SG.Targeting mitochondria with avocatin B induces selective leukemia cell death.Cancer Res2015;75:2478-88

[94]

Tcheng M,Lee EA,Spagnuolo PA.The mitochondria target drug avocatin B synergizes with induction chemotherapeutics to induce leukemia cell death.Leuk Lymphoma2017;58:986-8

[95]

Tcheng M,Ahmed N.Very long chain fatty acid metabolism is required in acute myeloid leukemia.Blood2021;137:3518-32

[96]

Mesbahi Y,Lock RB.Exploring the metabolic landscape of AML: from haematopoietic stem cells to myeloblasts and leukaemic stem cells.Front Oncol2022;12:807266

[97]

Zhang Y,Patterson AD.Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice.J Biol Chem2012;287:24784-94

[98]

Sriskanthadevan S,Chung TE.AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress.Blood2015;125:2120-30

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/