Targeting regulated cell death pathways in acute myeloid leukemia

Sylvain Garciaz , Thomas Miller , Yves Collette , Norbert Vey

Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) : 151 -68.

PDF
Cancer Drug Resistance ›› 2023, Vol. 6 ›› Issue (1) :151 -68. DOI: 10.20517/cdr.2022.108
review-article

Targeting regulated cell death pathways in acute myeloid leukemia

Author information +
History +
PDF

Abstract

The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML patients, particularly those resistant to intrinsic apoptosis.

Keywords

Acute myeloid leukemia / regulated cell death / apoptosis / ferroptosis / necroptosis / autophagy

Cite this article

Download citation ▾
Sylvain Garciaz, Thomas Miller, Yves Collette, Norbert Vey. Targeting regulated cell death pathways in acute myeloid leukemia. Cancer Drug Resistance, 2023, 6(1): 151-68 DOI:10.20517/cdr.2022.108

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armenta DA.Investigating nonapoptotic cell death using chemical biology approaches.Cell Chem Biol2020;27:376-86 PMCID:PMC7185180

[2]

Galluzzi L,Aaronson SA.Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ2018;25:486-541 PMCID:PMC5864239

[3]

Schweichel JU.The morphology of various types of cell death in prenatal tissues.Teratology1973;7:253-66

[4]

Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways.Nat Rev Mol Cell Biol2014;15:135-47

[5]

Döhner H,Grimwade D.Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.Blood2017;129:424-47 PMCID:PMC5291965

[6]

Döhner H,Appelbaum FR.Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN.Blood2022;140:1345-77

[7]

Döhner H,Bloomfield CD.Acute myeloid leukemia.N Engl J Med2015;373:1136-52

[8]

Dombret H,Butrym A.International phase 3 study of azacitidine vs. conventional care regimens in older patients with newly diagnosed AML with > 30% blasts.Blood2015;126:291-9 PMCID:PMC4504945

[9]

Kantarjian HM,Dmoszynska A.Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia.J Clin Oncol2012;30:2670-7 PMCID:PMC4874148

[10]

DiNardo CD,Pullarkat V.Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N Engl J Med2020;383:617-29

[11]

Garciaz S,Hicheri Y,Vey N.Venetoclax in acute myeloid leukemia: molecular basis, evidences for preclinical and clinical efficacy and strategies to target resistance.Cancers2021;13:5608 PMCID:PMC8615921

[12]

Maiti A,Cortes JE.Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens.Haematologica2021;106:894-8 PMCID:PMC7927994

[13]

Maiti A,Andreeff M.Beyond BCL-2 inhibition in acute myloid leukemia: other approaches to leverage the apoptotic pathway.Clin Lymphoma Myeloma Leuk2022;22:652-8

[14]

Lachowiez CA,DiNardo CD.Advancing the standard: venetoclax combined with intensive induction and consolidation therapy for acute myeloid leukemia.Ther Adv Hematol2022;13:20406207221093964 PMCID:PMC9058453

[15]

Czabotar PE,Strasser A.Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.Nat Rev Mol Cell Biol2014;15:49-63

[16]

Tait SW.Mitochondria and cell death: outer membrane permeabilization and beyond.Nat Rev Mol Cell Biol2010;11:621-32

[17]

Cheng EH,Fisher JK,Korsmeyer SJ.VDAC2 inhibits BAK activation and mitochondrial apoptosis.Science2003;301:513-7

[18]

Chen HC,Inoue-Yamauchi A.An interconnected hierarchical model of cell death regulation by the BCL-2 family.Nat Cell Biol2015;17:1270-81 PMCID:PMC4589531

[19]

Hardwick JM.Multiple functions of BCL-2 family proteins.Cold Spring Harb Perspect Biol2013;5:a008722-a008722 PMCID:PMC3552500

[20]

Letai A,Walensky LD,Weiler S.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics.Cancer Cell2002;2:183-92

[21]

Carneiro BA.Targeting apoptosis in cancer therapy.Nat Rev Clin Oncol2020;17:395-417 PMCID:PMC8211386

[22]

Meier P.Lucifer’s labyrinth--ten years of path finding in cell death.Mol Cell2007;28:746-54

[23]

Deveraux QL,Salvesen GS.X-linked IAP is a direct inhibitor of cell-death proteases.Nature1997;388:300-4

[24]

Bai L,Wang S.Small-molecule SMAC mimetics as new cancer therapeutics.Pharmacol Ther2014;144:82-95 PMCID:PMC4247261

[25]

Vercammen D,Denecker G.Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor.J Exp Med1998;187:1477-85 PMCID:PMC2212268

[26]

Degterev A,Boyce M.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.Nat Chem Biol2005;1:112-9

[27]

Linkermann A.Necroptosis.N Engl J Med2014;370:455-65 PMCID:PMC4035222

[28]

Dixon SJ,Lamprecht MR.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell2012;149:1060-72 PMCID:PMC3367386

[29]

Hirschhorn T.The development of the concept of ferroptosis.Free Radic Biol Med2019;133:130-43 PMCID:PMC6368883

[30]

Skouta R,Wang J.Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.J Am Chem Soc2014;136:4551-6 PMCID:PMC3985476

[31]

Zilka O,Li B.On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death.ACS Cent Sci2017;3:232-43 PMCID:PMC5364454

[32]

Stockwell BR,Bayir H.Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017;171:273-85 PMCID:PMC5685180

[33]

Gao M,Quadri N,Jiang X.Glutaminolysis and transferrin regulate ferroptosis.Mol Cell2015;59:298-308 PMCID:PMC4506736

[34]

Yang WS,Gaschler MM,Shchepinov MS.Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc Natl Acad Sci USA2016;113:E4966-75 PMCID:PMC5003261

[35]

Doll S,Tyurina YY.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.Nat Chem Biol2017;13:91-8 PMCID:PMC5610546

[36]

Kagan VE,Qu F.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat Chem Biol2017;13:81-90 PMCID:PMC5506843

[37]

Bersuker K,Li Z.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.Nature2019;575:688-92 PMCID:PMC6883167

[38]

Doll S,Shah R.FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019;575:693-8

[39]

Kraft VAN,Pfeiffer S.GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling.ACS Cent Sci2020;6:41-53 PMCID:PMC6978838

[40]

Soula M,Zilka O.Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers.Nat Chem Biol2020;16:1351-60 PMCID:PMC8299533

[41]

Kang R,Tang D.The tumor suppressor protein p53 and the ferroptosis network.Free Radic Biol Med2019;133:162-8 PMCID:PMC6251771

[42]

Tang D,Berghe TV,Kroemer G.The molecular machinery of regulated cell death.Cell Res2019;29:347-64 PMCID:PMC6796845

[43]

Amaravadi RK,Debnath J.Targeting autophagy in cancer: recent advances and future directions.Cancer Discov2019;9:1167-81 PMCID:PMC7306856

[44]

Bergsbaken T,Cookson BT.Pyroptosis: host cell death and inflammation.Nat Rev Microbiol2009;7:99-109 PMCID:PMC2910423

[45]

Vitale I,Castedo M.Mitotic catastrophe: a mechanism for avoiding genomic instability.Nat Rev Mol Cell Biol2011;12:385-92

[46]

Vakifahmetoglu H,Zhivotovsky B.Death through a tragedy: mitotic catastrophe.Cell Death Differ2008;15:1153-62

[47]

Gao M,Pan Q,Xiang J.Ferroptosis is an autophagic cell death process.Cell Res2016;26:1021-32 PMCID:PMC5034113

[48]

Zhou Y,Chen C.The crosstalk between autophagy and ferroptosis: what can we learn to target drug resistance in cancer?.Cancer Biol Med2019;16:630-46 PMCID:PMC6936238

[49]

Lee BL,Gupta A.Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation.J Exp Med2018;215:2279-88 PMCID:PMC6122968

[50]

Canli Ö,Grootjans S.Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors.Blood2016;127:139-48 PMCID:PMC4705604

[51]

Seiler A,Förster H.Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.Cell Metab2008;8:237-48

[52]

Hughes SA,Weir A.Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency.EMBO J2023;42:e110468 PMCID:PMC9975961

[53]

Garciaz S,Müller S.Pharmacologic reduction of mitochondrial iron triggers a noncanonical BAX/BAK-dependent cell death.Cancer Discov2022;12:774-91 PMCID:PMC9390741

[54]

Mai TT,Hienzsch A.Salinomycin kills cancer stem cells by sequestering iron in lysosomes.Nat Chem2017;9:1025-33 PMCID:PMC5890907

[55]

Saxena K,Daver N.Harnessing apoptosis in AML.Clin Lymphoma Myeloma Leuk2020;20 Suppl 1:S61-4

[56]

Lowe SW,McClatchey A.P53 status and the efficacy of cancer therapy in vivo.Science1994;266:807-10

[57]

Hu N,Xue H.Abstract 3077: Preclinical characterization of BGB-11417, a potent and selective Bcl-2 inhibitor with superior antitumor activities in haematological tumor models.Cancer Res2020;80:3077-3077

[58]

Tiran AL,Davidson J.Abstract 1276: identification of S65487/VOB560 as a potent and selective intravenous 2nd-generation BCL-2 inhibitor active in wild-type and clinical mutants resistant to Venetoclax.Cancer Res2021;81:1276

[59]

Ailawadhi S,Chen Z.First-in-human study of lisaftoclax (APG-2575), a novel BCL-2 inhibitor (BCL-2i), in patients (pts) with relapsed/refractory (R/R) CLL and other hematologic malignancies (HMs).J Clin Oncol2021;39:7502

[60]

Walker AR,Montesinos P.Phase 1 study of LP-108 as monotherapy and in combination with azacitidine in patients with relapsed or refractory myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), or acute myeloid leukemia (AML).J Clin Oncol2022;40:TPS7071-TPS7071

[61]

Kotschy A,Murray J.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.Nature2016;538:477-82

[62]

Tron AE,Adam A.Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia.Nat Commun2018;9:5341 PMCID:PMC6297231

[63]

Caenepeel S,Belmontes B.AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies.Cancer Discov2018;8:1582-97

[64]

Caenepeel S,Belmontes B.Abstract 6218: discovery and preclinical evaluation of AMG 397, a potent, selective and orally bioavailable MCL1 inhibitor.Cancer Res2020;80:6218-6218

[65]

Wei AH,Spencer A.Targeting MCL-1 in hematologic malignancies: rationale and progress.Blood Rev2020;44:100672 PMCID:PMC7442684

[66]

Zeidner JF.Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia.Leuk Res2015;39:1312-8

[67]

Zeidner JF,Blackford AL.Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7 + 3) in newly diagnosed acute myeloid leukemia.Haematologica2015;100:1172-9

[68]

Bogenberger J,Hansen N.Combined venetoclax and alvocidib in acute myeloid leukemia.Oncotarget2017;8:107206-22 PMCID:PMC5739808

[69]

Zeidner JF,Frattini M.Phase I study of alvocidib followed by 7 + 3 (cytarabine + daunorubicin) in newly diagnosed acute myeloid leukemia.Clin Cancer Res2021;27:60-9

[70]

Tibes R.Transcriptional silencing of MCL-1 through cyclin-dependent kinase inhibition in acute myeloid leukemia.Front Oncol2019;9:1205 PMCID:PMC6920180

[71]

Baker A,Verbrugge I.The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia.Cancer Res2016;76:1158-69

[72]

Konopleva M,Patel K.A phase 1 dose-escalation study of the oral CDK inhibitor voruciclib in patients with relapsed/refractory B-cell malignancies or acute myeloid leukemia (AML): preliminary results of the completed dose escalation stage in AML.Blood2021;138:3423-3423

[73]

Dey J,Kerwin WS.Voruciclib, a clinical stage oral CDK9 inhibitor, represses MCL-1 and sensitizes high-risk Diffuse Large B-cell Lymphoma to BCL2 inhibition.Sci Rep2017;7:18007 PMCID:PMC5740070

[74]

Cidado J,Proia T.AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells.Clin Cancer Res2020;26:922-34

[75]

Frame S,MacKay C.Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer.PLoS One2020;15:e0234103

[76]

Chantkran W,Zheleva D,Wheadon H.Interrogation of novel CDK2/9 inhibitor fadraciclib (CYC065) as a potential therapeutic approach for AML.Cell Death Discov2021;7:137

[77]

Borthakur GM,Al Azzawi H,Blake D.Combining CDK2/9 inhibitor CYC065 with venetoclax, a BCL2 inhibitor, to treat patients with relapsed or refractory AML or MDS.Blood2019;134:1379-1379

[78]

Goh KC,Hart S.Abstract 2542: TG02, a novel multi-kinase inhibitor with potent anti-leukemic activity.Cancer Res2010;70:2542-2542

[79]

Kivioja JL,Kumar A.Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia.Leukemia2019;33:1360-72

[80]

Kontro M,Majumder MM.HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia.Leukemia2017;31:301-9

[81]

Pullarkat VA,Jabbour E.Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma.Cancer Discov2021;11:1440-53

[82]

Harvey EP,Cohen DT.Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering.Cell Chem Biol2020;27:647-56.e6 PMCID:PMC7405809

[83]

Liu N,Lian C.Selective covalent targeting of anti-apoptotic BFL-1 by a sulfonium-tethered peptide.Chembiochem2021;22:340-4

[84]

Reyna DE,Lopez A.Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia.Cancer Cell2017;32:490-505.e10 PMCID:PMC5793879

[85]

Liang T,Elhassan RM,Yang X.HDAC-Bax multiple ligands enhance Bax-dependent apoptosis in HeLa cells.J Med Chem2020;63:12083-99

[86]

Luo X,Huang K.The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?.F1000Res2020;9:935 PMCID:PMC7411521

[87]

van Delft MF,Khakham Y.A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis.Nat Chem Biol2019;15:1057-66

[88]

Yuan Z,Czabotar PE.VDAC2 and the BCL-2 family of proteins.Biochem Soc Trans2021;49:2787-95 PMCID:PMC8786305

[89]

Wang BT,Wang L.Multimeric anti-DR5 IgM agonist antibody IGM-8444 is a potent inducer of cancer cell apoptosis and synergizes with chemotherapy and BCL-2 inhibitor ABT-199.Mol Cancer Ther2021;20:2483-94 PMCID:PMC9398157

[90]

Phillips DC,Cheng D.Hexavalent TRAIL fusion protein eftozanermin alfa optimally clusters apoptosis-inducing TRAIL receptors to induce on-target antitumor activity in solid tumors.Cancer Res2021;81:3402-14

[91]

de Jonge MJ,Devriese L.First-in-human study of abbv-621, a TRAIL receptor agonist fusion protein, in patients (Pts) with relapsed/refractory (RR) acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL).Blood2019;134:3924

[92]

Humphreys L,Longley DB.FLIP as a therapeutic target in cancer.FEBS J2018;285:4104-23

[93]

Longley DB,Fox J.Abstract 5220: development of first-in-class small molecule inhibitors of FLIP which activate caspase-8, the nodal regulator of apoptosis, necroptosis and pyroptosis.Cancer Res2020;80:5220

[94]

Higgins CA,Roberts J.Abstract 1342: development and preclinical evaluation of unique first-in-class small molecule inhibitors of the anti-apoptotic protein FLIP.Cancer Res2021;81:1342

[95]

Hashimoto M,Nakagawa R.Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia.Nat Cancer2021;2:340-56

[96]

Zhou J,Tan TZ.X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery.Mol Oncol2018;12:33-47 PMCID:PMC5748481

[97]

Carter BZ,Wang Z.Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells.Blood2005;105:4043-50 PMCID:PMC1895077

[98]

Erba HP,Juckett M.Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML).Invest New Drugs2013;31:1023-34

[99]

Schimmer AD,Borthakur G.Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia.J Clin Oncol2009;27:4741-6 PMCID:PMC5073380

[100]

Schimmer AD,Hänel M.Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study.Clin Lymphoma Myeloma Leuk2011;11:433-8

[101]

Boddu P,Verstovsek S.SMAC mimetics as potential cancer therapeutics in myeloid malignancies.Br J Haematol2019;185:219-31

[102]

Frey NV,Mangan J.A phase I study using single agent birinapant in patients with relapsed myelodysplastic syndrome and acute myelogenous leukemia.Blood2014;124:3758-3758

[103]

Donnellan WB,Heuser M.A phase 2 study of azacitidine (5-AZA) with or without birinapant in subjects with higher risk myelodysplastic syndrome (MDS) or chronic myelomonocytic leukemia (CMML).J Clin Oncol2016;34:7060

[104]

Morrish E,Moujalled DM.Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models.Blood Adv2020;4:5062-77 PMCID:PMC7594394

[105]

Mita MM,Papadopoulos KP.A phase I study of ASTX660, an antagonist of inhibitors of apoptosis proteins, in adults with advanced cancers or lymphoma.Clin Cancer Res2020;26:2819-26

[106]

Ward GA,Ahn JS.ASTX660, a novel non-peptidomimetic antagonist of cIAP1/2 and XIAP, potently induces TNFα-dependent apoptosis in cancer cell lines and inhibits tumor growth.Mol Cancer Ther2018;17:1381-91

[107]

Pemmaraju N,Bose P.Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis.Blood Adv2021;5:3163-73 PMCID:PMC8405193

[108]

Brumatti G,Lalaoui N.The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia.Sci Transl Med2016;8:339ra69

[109]

Safferthal C,Fulda S.Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells.Oncogene2017;36:1487-502

[110]

Su Z,Xie L,Chen Y.Cancer therapy in the necroptosis era.Cell Death Differ2016;23:748-56 PMCID:PMC4832112

[111]

Hillert LK,Nimmagadda SC,Naumann M.Targeting RIPK1 in AML cells carrying FLT3-ITD.Int J Cancer2019;145:1558-69

[112]

Li J,Wang F.RIPK1 inhibition enhances the therapeutic efficacy of chidamide in FLT3-ITD positive AML, both in vitro and in vivo.Leuk Lymphoma2022;63:1167-79

[113]

Xin J,Breslin P.Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway.Leukemia2017;31:1154-65 PMCID:PMC5457287

[114]

Huang X,Li Y,Ding W.Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its therapeutic exploitation in leukemia.J Exp Clin Cancer Res2018;37:310 PMCID:PMC6291981

[115]

Müller MD,Nielsen KN.A systematic review of expression and immunogenicity of human endogenous retroviral proteins in cancer and discussion of therapeutic approaches.Int J Mol Sci2022;23:1330 PMCID:PMC8836156

[116]

Fresquet V,Larrayoz M.Endogenous retroelement activation by epigenetic therapy reverses the warburg effect and elicits mitochondrial-mediated cancer cell death.Cancer Discov2021;11:1268-85

[117]

Zhang J,Li Q,Hu Y.Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism.Biomed Pharmacother2022;148:112747

[118]

Pardieu B,Ling F.Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia.Leukemia2022;36:1585-95

[119]

Yu Y,Cao L.The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.Mol Cell Oncol2015;2:e1054549 PMCID:PMC4905356

[120]

Yang WS,Welsch ME.Regulation of ferroptotic cancer cell death by GPX4.Cell2014;156:317-31 PMCID:PMC4076414

[121]

Yusuf RZ,Sharda A.Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers.Blood2020;136:1303-16 PMCID:PMC7483435

[122]

Woo JH,Yang WS.Elucidating compound mechanism of action by network perturbation analysis.Cell2015;162:441-51 PMCID:PMC4506491

[123]

Guo J,Han Q.Ferroptosis: a novel anti-tumor action for cisplatin.Cancer Res Treat2018;50:445-60 PMCID:PMC5912137

[124]

Birsen R,Decroocq J.APR-246 induces early cell death by ferroptosis in acute myeloid leukemia.Haematologica2022;107:403-16 PMCID:PMC8804578

[125]

Hong Y,Wang X.APR-246 triggers ferritinophagy and ferroptosis of diffuse large B-cell lymphoma cells with distinct TP53 mutations.Leukemia2022;36:2269-80

[126]

Du J,Li Y.DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin.Free Radic Biol Med2019;131:356-69

[127]

Smith KH,Lynch J.The heme-regulated inhibitor pathway modulates susceptibility of poor prognosis B-lineage acute leukemia to BH3-mimetics.Mol Cancer Res2021;19:636-50 PMCID:PMC8026502

[128]

Zhang X,Zhang Z.Dihydroartemisinin triggers ferroptosis in multidrug-resistant leukemia cells.DNA Cell Biol2022;41:705-15

[129]

Beatty A,Tyurina YY.Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1.Nat Commun2021;12:2244 PMCID:PMC8046803

[130]

Dierge E,Guilbaud C.Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects.Cell Metab2021;33:1701-1715.e5

[131]

Grignano E,Chapuis N.From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells.Front Oncol2020;10:586530 PMCID:PMC7530268

[132]

Müller S,Cañeque T.CD44 regulates epigenetic plasticity by mediating iron endocytosis.Nat Chem2020;12:929-38 PMCID:PMC7612580

[133]

Rafiq S,Muller S,Humbert M.Lysosomes in acute myeloid leukemia: potential therapeutic targets?.Leukemia2021;35:2759-70 PMCID:PMC8478647

[134]

Seo W,Song IC.The dual role of autophagy in acute myeloid leukemia.J Hematol Oncol2022;15:51 PMCID:PMC9077970

[135]

Rudat S,Cheng YY.RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.Leukemia2018;32:2189-202

[136]

Heydt Q,Saland E.Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia.Oncogene2018;37:787-97 PMCID:PMC5808073

[137]

Putyrski M,Bonn F.Disrupting the LC3 interaction region (LIR) binding of selective autophagy receptors sensitizes AML cell lines to cytarabine.Front Cell Dev Biol2020;8:208 PMCID:PMC7137635

[138]

Dykstra KM,Massey AC.Inhibiting autophagy targets human leukemic stem cells and hypoxic AML blasts by disrupting mitochondrial homeostasis.Blood Adv2021;5:2087-100 PMCID:PMC8095145

[139]

Horne GA,Kelly C.A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease.Leukemia2020;34:1775-86 PMCID:PMC7224085

[140]

Dupont M,Lauvinerie C.Autophagy targeting and hematological mobilization in FLT3-ITD acute myeloid leukemia decrease repopulating capacity and relapse by inducing apoptosis of committed leukemic cells.Cancers2022;14:453 PMCID:PMC8796021

[141]

Ronan B,Vescovi L.A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy.Nat Chem Biol2014;10:1013-9

[142]

Ghosh J.Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia.Exp Hematol2017;50:13-21 PMCID:PMC5569945

[143]

Kasner MT,Jeschke GR.Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition.Invest New Drugs2018;36:657-66 PMCID:PMC6060002

[144]

Park S,Saint Marcoux F.A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse.Leukemia2013;27:1479-86

[145]

Burnett AK,Knapper S.Addition of the mammalian target of rapamycin inhibitor, everolimus, to consolidation therapy in acute myeloid leukemia: experience from the UK NCRI AML17 trial.Haematologica2018;103:1654-61 PMCID:PMC6165825

[146]

Liesveld JL,Azadniv M.A phase II study of sequential decitabine and rapamycin in acute myelogenous leukemia.Leuk Res2022;112:106749

[147]

Johnson DC,Okondo MC.DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia.Nat Med2018;24:1151-6 PMCID:PMC6082709

[148]

Basiorka AA,Eksioglu EA.The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype.Blood2016;128:2960-75 PMCID:PMC5179338

[149]

Sallman DA.The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes.Blood2019;133:1039-48 PMCID:PMC7022316

[150]

McLemore AF,Meyer BS.Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes.JCI Insight2022;7 PMCID:PMC9462508

[151]

Chakraborty S,de Oliveira S,Verma A.Therapeutic targeting of the inflammasome in myeloid malignancies.Blood Cancer J2021;11:152 PMCID:PMC8440507

[152]

Zahr A, Borthakur G. Emerging cell cycle inhibitors for acute myeloid leukemia.Expert Opin Emerg Drugs2017;22:137-48

[153]

Sinha D,Khanna KK.Mitotic slippage: an old tale with a new twist.Cell Cycle2019;18:7-15 PMCID:PMC6343733

[154]

Conti G, Dias MH, Bernards R. Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells.Cancers2021;13:1118 PMCID:PMC7961328

[155]

Rodriguez R,Conrad M.Persister cancer cells: iron addiction and vulnerability to ferroptosis.Mol Cell2022;82:728-40 PMCID:PMC9152905

[156]

Poillet-Perez L,Joffre C.Autophagy is a major metabolic regulator involved in cancer therapy resistance.Cell Rep2021;36:109528

[157]

Thijssen R,Moujalled D.Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias.Blood2021;137:2721-35 PMCID:PMC8138548

[158]

Nechiporuk T,Nikolova O.The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells.Cancer Discov2019;9:910-25 PMCID:PMC6606338

[159]

Kim K,Loghavi S.Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax.Cancer2021;127:3772-81

[160]

Antoszczak M,Cañeque T.Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells.J Am Chem Soc2022;144:11536-45

[161]

Cui Z,Yang Z.Comprehensive analysis of a ferroptosis pattern and associated prognostic signature in acute myeloid leukemia.Front Pharmacol2022;13:866325 PMCID:PMC9152364

[162]

Shao R,Liu W.Establishment of a prognostic ferroptosis-related gene profile in acute myeloid leukaemia.J Cell Mol Med2021;25:10950-60 PMCID:PMC8642683

[163]

Song Y,Zhang P,Shen Y.Construction and validation of a novel ferroptosis-related prognostic model for acute myeloid leukemia.Front Genet2021;12:708699 PMCID:PMC8803125

[164]

Zhang X,Liu K.HIVEP3 cooperates with ferroptosis gene signatures to confer adverse prognosis in acute myeloid leukemia.Cancer Med2022;11:5050-65 PMCID:PMC9761064

[165]

Montalban-Bravo G,Ganan-Gomez I.Transcriptomic analysis implicates necroptosis in disease progression and prognosis in myelodysplastic syndromes.Leukemia2020;34:872-81 PMCID:PMC7056563

[166]

Bhatt S,Olesinski EA.Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia.Cancer Cell2020;38:872-890.e6 PMCID:PMC7988687

[167]

Collignon A,Montersino C.A chemogenomic approach to identify personalized therapy for patients with relapse or refractory acute myeloid leukemia: results of a prospective feasibility study.Blood Cancer J2020;10:64 PMCID:PMC7266815

[168]

Kantarjian H,DiNardo C.Acute myeloid leukemia: current progress and future directions.Blood Cancer J2021;11:41

[169]

Narr A,Donato E.S120: acute myeloid leukemia represents a ferroptosis-sensitive cancer entity raising the possibility for novel targeting strategies.HemaSphere2022;6:21-2

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/