Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance

Jeff Rytlewski , Qierra R. Brockman , Rebecca D. Dodd , Mohammed Milhem , Varun Monga

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (1) : 25 -35.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (1) :25 -35. DOI: 10.20517/cdr.2021.88
review-article

Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance

Author information +
History +
PDF

Abstract

Sarcomas are a class of rare malignancies of mesenchymal origin with a heterogeneous histological spectrum. They are classically associated with poor outcomes, especially once metastasized. A path to improving clinical outcomes may be made through modifying the epigenome, where a variety of sarcomas demonstrate changes that contribute to their oncogenic phenotypes. This Perspective article identifies and describes changes in the sarcoma genome, while discussing specific epigenetic changes and their effect on clinical outcomes. Clinical attempts at modulating epigenetics in sarcoma are reviewed, as well as potential implications of these studies. Epigenetic targets to reverse and delay chemotherapy resistance are discussed. Future directions with primary next steps are proposed to invigorate the current understanding of epigenetic biomarkers to enact targeted therapies to epigenetic phenotypes of sarcoma subtypes. Modifications to prior studies, as well as proposed clinical steps, are also addressed.

Keywords

Epigenetics / sarcoma / resistance / metastasis

Cite this article

Download citation ▾
Jeff Rytlewski, Qierra R. Brockman, Rebecca D. Dodd, Mohammed Milhem, Varun Monga. Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. Cancer Drug Resistance, 2022, 5(1): 25-35 DOI:10.20517/cdr.2021.88

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boroughs LK.Metabolic pathways promoting cancer cell survival and growth.Nat Cell Biol2015;17:351-9 PMCID:PMC4939711

[2]

Leonetti A,Minari R,Giovannetti E.Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer.Br J Cancer2019;121:725-37 PMCID:PMC6889286

[3]

Escrivá-de-Romaní S,Bellet M.HER2-positive breast cancer: current and new therapeutic strategies.Breast2018;39:80-8

[4]

Ren R.Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia.Nat Rev Cancer2005;5:172-83

[5]

O'Brien SG,Larson RA.IRIS InvestigatorsImatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia.N Engl J Med2003;348:994-1004

[6]

Kelly CM,Chi P.The management of metastatic GIST: current standard and investigational therapeutics.J Hematol Oncol2021;14:2 PMCID:PMC7786896

[7]

Demetri GD,Blanke CD.Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors.N Engl J Med2002;347:472-80

[8]

Howlander N,Krapcho M. Survival rates for gastrointestinal stromal tumors. Available from: https://www.cancer.org/cancer/gastrointestinal-stromal-tumor/detection-diagnosis-staging/survival-rates.html [Last accessed on 17 Dec 2021]

[9]

Dang CV,Shokat KM.Drugging the 'undruggable' cancer targets.Nat Rev Cancer2017;17:502-8 PMCID:PMC5945194

[10]

Housman G,Heerboth S.Drug resistance in cancer: an overview.Cancers (Basel)2014;6:1769-92 PMCID:PMC4190567

[11]

Tawbi HA,Bolejack V.Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial.Lancet Oncol2017;18:1493-501 PMCID:PMC7939029

[12]

Keung EZ,Salazar R.Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab.Clin Cancer Res2020;26:1258-66 PMCID:PMC7731262

[13]

Dancsok AR,Nielsen TO.Advances in sarcoma diagnostics and treatment.Oncotarget2017;8:7068-93 PMCID:PMC5351692

[14]

D'angelo SP,Schwartz GK.Sarcoma immunotherapy: past approaches and future directions.Sarcoma2014;2014:391967 PMCID:PMC3981453

[15]

Ratan R.Chemotherapy for soft tissue sarcoma.Cancer2016;122:2952-60

[16]

Hall F,Wilky B.Future directions in soft tissue sarcoma treatment.Curr Probl Cancer2019;43:300-7

[17]

Bourcier K,Tselikas L.Basic knowledge in soft tissue sarcoma.Cardiovasc Intervent Radiol2019;42:1255-61

[18]

Ritter J.Osteosarcoma.Ann Oncol2010;21 Suppl 7:vii320-5

[19]

Tsukamoto S,Angelini A.Current treatment considerations for osteosarcoma metastatic at presentation.Orthopedics2020;43:e345-58

[20]

Bishop MW,Gorlick R.Future directions in the treatment of osteosarcoma.Curr Opin Pediatr2016;28:26-33 PMCID:PMC4761449

[21]

Yen CC.Next frontiers in systemic therapy for soft tissue sarcoma.Chin Clin Oncol2018;7:43

[22]

Nebbioso A,Dell'Aversana C.Cancer epigenetics: moving forward.PLoS Genet2018;14:e1007362 PMCID:PMC5991666

[23]

Dawson MA.Cancer epigenetics: from mechanism to therapy.Cell2012;150:12-27

[24]

Kanwal R,Gupta S. Cancer epigenetics: an introduction. In: Verma M, editor. Cancer epigenetics. New York: Springer; 2015. p. 3-25.

[25]

Asano T.Drug resistance in cancer therapy and the role of epigenetics.J Nippon Med Sch2020;87:244-51

[26]

Perez-Plasencia C.Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?.Mol Cancer2006;5:27 PMCID:PMC1540437

[27]

Garcia-Martinez L,Nakata Y,Morey L.Epigenetic mechanisms in breast cancer therapy and resistance.Nat Commun2021;12:1786 PMCID:PMC7979820

[28]

Zhang YW,Wang JZ.Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer.Epigenetics2014;9:896-909 PMCID:PMC4065187

[29]

Soini Y.Epigenetic and genetic changes in soft tissue sarcomas: a review.APMIS2016;124:925-34

[30]

Cote GM.Role of epigenetic modulation for the treatment of sarcoma.Curr Treat Options Oncol2013;14:454-64

[31]

Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca, Cancer Genome Atlas Research NetworkComprehensive and integrated genomic characterization of adult soft tissue sarcomas.Cell2017;171:950-65.e28

[32]

Bui NQ,Trabucco SE.A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis.Clin Sarcoma Res2019;9:12 PMCID:PMC6739971

[33]

Koelsche C,Stichel D.Sarcoma classification by DNA methylation profiling.Nat Commun2021;12:498 PMCID:PMC7819999

[34]

Bracken AP,Capra M,Colli E.EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer.EMBO J2003;22:5323-35 PMCID:PMC213796

[35]

Kimura H,Ogawa T,Shiota K.Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways.Nucleic Acids Res2003;31:3101-13 PMCID:PMC162240

[36]

Dickson MA,Keohan ML.Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma.J Clin Oncol2013;31:2024-8 PMCID:PMC3661937

[37]

Dickson MA,Keohan ML.Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor Palbociclib: a phase 2 clinical trial.JAMA Oncol2016;2:937-40 PMCID:PMC4991028

[38]

Roncati L,Sartori G,Pusiol T.Loss of CDKN2A promoter methylation coincides with the epigenetic transdifferentiation of uterine myosarcomatous cells.Int J Gynecol Pathol2016;35:309-15

[39]

Stewart E,Wang H.StJude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses.Cancer Cell2018;34:411-26.e19 PMCID:PMC6158019

[40]

Ciarapica R,Adesso L.Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS.BMC Cancer2014;14:139 PMCID:PMC4016511

[41]

Marchesi I,Fais M,Giordano A.12-O-tetradecanoylphorbol-13-acetate and EZH2 inhibition: a novel approach for promoting myogenic differentiation in embryonal rhabdomyosarcoma cells.J Cell Physiol2018;233:2360-5

[42]

Zoroddu S,Bagella L.PRC2: an epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis.Clin Epigenetics2021;13:156 PMCID:PMC8351429

[43]

Hale R,Shipley J.Epigenetic targets in synovial sarcoma: a mini-review.Front Oncol2019;9:1078 PMCID:PMC6813544

[44]

Chu QS,Alcindor T.A phase II study of SB939, a novel pan-histone deacetylase inhibitor, in patients with translocation-associated recurrent/metastatic sarcomas-NCIC-CTG IND 200†.Ann Oncol2015;26:973-81

[45]

Tang F,Tu C,Duan Z.Therapeutic applications of histone deacetylase inhibitors in sarcoma.Cancer Treat Rev2017;59:33-45 PMCID:PMC5581728

[46]

Li Y,Jiang W.Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells.Tumour Biol2014;35:4831-9

[47]

Xie A,Chandramouly G.H2AX post-translational modifications in the ionizing radiation response and homologous recombination.Cell Cycle2010;9:3602-10 PMCID:PMC2980696

[48]

Chow WA.Chondrosarcoma: biology, genetics, and epigenetics.F1000Res2018;7:1826 PMCID:PMC6248264

[49]

Nacev BA,Intlekofer AM.The epigenomics of sarcoma.Nat Rev Cancer2020;20:608-23 PMCID:PMC8380451

[50]

Sakimura R,Nakatani F.Antitumor effects of histone deacetylase inhibitor on Ewing's family tumors.Int J Cancer2005;116:784-92

[51]

Santos MP, de Farias CB, Roesler R, Brunetto AL, Abujamra AL. In vitro antitumor effect of sodium butyrate and zoledronic acid combined with traditional chemotherapeutic drugs: a paradigm of synergistic molecular targeting in the treatment of Ewing sarcoma.Oncol Rep2014;31:955-68

[52]

Ma Y,Rajewski L.Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis.J Mol Med (Berl)2019;97:957-72 PMCID:PMC6584050

[53]

Choi JH.The 2020 WHO classification of tumors of soft tissue: selected changes and new entities.Adv Anat Pathol2021;28:44-58

[54]

Gatta G,Casali PG.RARECARE working groupRare cancers are not so rare: the rare cancer burden in Europe.Eur J Cancer2011;47:2493-511

[55]

Ray-Coquard I,Coindre JM.Sarcoma: concordance between initial diagnosis and centralized expert review in a population-based study within three European regions.Ann Oncol2012;23:2442-9 PMCID:PMC3425368

[56]

Italiano A,Rapp J.Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study.Lancet Oncol2016;17:532-8

[57]

Zhang P.Epigenetic regulators: new therapeutic targets for soft tissue sarcoma.Cancer Cell Microenviron2014;1:e191 PMCID:PMC4465175

[58]

Cooper S,Hassan R.Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment.Cell Rep2014;7:1456-70 PMCID:PMC4062935

[59]

McDermott M,Busschots S.In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies.Front Oncol2014;4:40 PMCID:PMC3944788

[60]

Zakharia Y,Swami U.Targeting epigenetics for treatment of BRAF mutated metastatic melanoma with decitabine in combination with vemurafenib: a phase lb study.Oncotarget2017;8:89182-93 PMCID:PMC5687680

[61]

Rothbart SB.Epigenetic therapy for epithelioid sarcoma.Cell2020;181:211

[62]

Italiano A.Targeting epigenetics in sarcomas through EZH2 inhibition.J Hematol Oncol2020;13:33 PMCID:PMC7140314

[63]

Dembla V,Hess K.Outcomes of patients with sarcoma enrolled in clinical trials of pazopanib combined with histone deacetylase, mTOR, Her2, or MEK inhibitors.Sci Rep2017;7:15963 PMCID:PMC5698336

[64]

van der Graaf WT,Chawla SP.Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial.Lancet2012;379:1879-86

[65]

Monga V,Tanas M.A phase I/II study targeting angiogenesis using bevacizumab combined with chemotherapy and a histone deacetylase inhibitor (Valproic Acid) in advanced sarcomas.Cancers (Basel)2018;10:53 PMCID:PMC5836085

[66]

Verschraegen CF,Lee SJ.Phase IB study of the combination of docetaxel, gemcitabine, and bevacizumab in patients with advanced or recurrent soft tissue sarcoma: the Axtell regimen.Ann Oncol2012;23:785-90

[67]

Agulnik M,Okuno SH.An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas.Ann Oncol2013;24:257-63

[68]

Monga V,Scherer A.Phase Ib study of decitabine in combination with gemcitabine in treatment of advanced soft tissue and bone sarcomas.J Clin Oncol2020;38:11550

[69]

Bauman J,Verschraegen CF.A phase I protocol of hydralazine and valproic acid in advanced, previously treated solid cancers.Transl Oncol2014;7:349-54 PMCID:PMC4792814

[70]

Murata K,Sugimoto K.A novel mechanism for drug-induced liver failure: inhibition of histone acetylation by hydralazine derivatives.J Hepatol2007;46:322-9

[71]

Campos Vidal B, Mello MLS. Sodium valproate (VPA) interactions with DNA and histones.Int J Biol Macromol2020;163:219-31

[72]

Chavez-Blanco A,Perez-Cardenas E.Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines.Cancer Cell Int2006;6:2 PMCID:PMC1408081

[73]

Aggerholm-Pedersen N,Rose H.Pazopanib in the treatment of bone sarcomas: clinical experience.Transl Oncol2020;13:295-9 PMCID:PMC6931211

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/