A nano-enhanced vaccine for metastatic melanoma immunotherapy

Katelyn E. Salotto , Walter C. Olson Jr , Karlyn E. Pollack , Anuradha Illendula , Elishama Michel , Sydney Henriques , Todd Fox , Susan Walker , Marya Dunlap-Brown , Craig L. Slingluff Jr , Mark Kester , Helena W. Snyder

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) : 829 -45.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (3) :829 -45. DOI: 10.20517/cdr.2021.132
review-article

A nano-enhanced vaccine for metastatic melanoma immunotherapy

Author information +
History +
PDF

Abstract

Aim: Despite the huge advancements in cancer therapies and treatments over the past decade, most patients with metastasized melanoma still die from the disease. This poor prognosis largely results from resistance to conventional chemotherapies and other cytotoxic drugs. We have previously identified 6 antigenic peptides derived from melanomas that have proven efficacious for activating CD4+ T cells in clinical trials for melanoma. Our aim was to improve pharmacodynamics, pharmacokinetic and toxicological parameters by individually encapsulating each of the 6 melanoma helper peptides within their own immunogenic nanoliposomes.

Methods: We modified these liposomes as necessary to account for differences in the peptides’ chemical properties, resulting in 3 distinct formulations. To further enhance immunogenicity, we also incorporated KDO2, a TLR4 agonist, into the lipid bilayer of all nanoliposome formulations. We then conducted in vivo imaging studies in mice and ex vivo cell studies from 2 patient samples who both strongly expressed one of the identified peptides.

Results: We demonstrate that these liposomes, loaded with the different melanoma helper peptides, can be readily mixed together and simultaneously delivered without toxicity in vivo. These liposomes are capable of being diffused to the secondary lymphoid organs very quickly and for at least 6 days. In addition, we show that these immunogenic liposomes enhance immune responses to specific peptides ex vivo.

Conclusion: Lipid-based delivery systems, including nanoliposomes and lipid nanoparticles, have now been validated for pharmacological (small molecules, bioactive lipids) and molecular (mRNA, siRNA) therapeutic approaches. However, the utility of these formulations as cancer vaccines, delivering antigenic peptides, has not yet achieved the same degree of commercial success. Here, we describe the novel and successful development of a nanoliposome-based cancer vaccine for melanoma. These vaccines help to circumvent drug resistance by increasing a patient’s T cell response, making them more susceptible to checkpoint blockade therapy.

Keywords

Nanoliposomes / nanoscale drug delivery / cancer vaccines / metastasized melanoma / peptides / melanoma drug resistance

Cite this article

Download citation ▾
Katelyn E. Salotto, Walter C. Olson Jr, Karlyn E. Pollack, Anuradha Illendula, Elishama Michel, Sydney Henriques, Todd Fox, Susan Walker, Marya Dunlap-Brown, Craig L. Slingluff Jr, Mark Kester, Helena W. Snyder. A nano-enhanced vaccine for metastatic melanoma immunotherapy. Cancer Drug Resistance, 2022, 5(3): 829-45 DOI:10.20517/cdr.2021.132

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Fuchs HE.Cancer Statistics, 2021.CA Cancer J Clin2021;71:7-33

[2]

Grossman D.Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets.Cancer Metastasis Rev2001;201:3-11

[3]

Porta CA. Drug resistance in melanoma: new perspectives.Curr Med Chem2007;14:387-91

[4]

Winder M.Mechanisms of drug resistance in melanoma. In: Mandalà M, Romano E, editors. Mechanisms of drug resistance in cancer therapy. Cham: Springer International Publishing; 2018. pp. 91-108.

[5]

Lim J,Lee K.Current immunotherapy approaches for malignant melanoma.BioChip J2019;13:105-14

[6]

Dance A.Cancer immunotherapy comes of age.Science2017;355:1220-2

[7]

Rudmann DG.On-target and off-target-based toxicologic effects.Toxicol Pathol2013;41:310-4

[8]

Blass E.Advances in the development of personalized neoantigen-based therapeutic cancer vaccines.Nat Rev Clin Oncol2021;18:215-29 PMCID:PMC7816749

[9]

Lo JA,Juneja VR.Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses.Sci Transl Med2021;13:eabd8636 PMCID:PMC8130008

[10]

Suri A.Cancer testis antigens-their importance in immunotherapy and in the early detection of cancer.Expert Opin Biol Ther2006;6:379-89

[11]

Kitano S,Liu C.Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients.Cancer Immunol Res2013;1:235-44 PMCID:PMC3880021

[12]

Friedman KM,Devillier LE.Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes.J Immunother2012;35:400-8 PMCID:PMC7412749

[13]

Slingluff CL,Smolkin ME.Immunogenicity for CD8+ and CD4+ T cells of 2 formulations of an incomplete freund’s adjuvant for multipeptide melanoma vaccines.J Immunother2010;33:630-8 PMCID:PMC3218563

[14]

Hunder NN,Cao J.Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1.N Engl J Med2008;358:2698-703 PMCID:PMC3277288

[15]

Slingluff CL Jr,Chianese-Bullock KA.Trial to evaluate the immunogenicity and safety of a melanoma helper peptide vaccine plus incomplete Freund's adjuvant, cyclophosphamide, and polyICLC (Mel63).J Immunother Cancer2021;9:e000934 PMCID:PMC7825263

[16]

Melssen MM,Chianese-Bullock KA.A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund’s adjuvant in melanoma patients.J Immunother Cancer2019;7:163 PMCID:PMC6598303

[17]

Gabizon A,Barenholz Y.Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies.Clin Pharmacokinet2003;42:419-36

[18]

Chung YH,Fiering SN.COVID-19 vaccine frontrunners and their nanotechnology design.ACS Nano2020;14:12522-37 PMCID:PMC7553041

[19]

Pacheco TJA,Souza DGD.Nano COVID-19 vaccines: the firsts RNA lipid nanoparticle vaccines being approved from history - review.RSD2020;9:e20191211123

[20]

Shaw JJP,Venner E.Inhibition of lysosomal function mitigates protective mitophagy and augments ceramide nanoliposome-induced cell death in head and neck squamous cell carcinoma.Mol Cancer Ther2020;19:2621-33 PMCID:PMC8121212

[21]

Zanieri F,Montefusco D.Exogenous liposomal ceramide-C6 ameliorates lipidomic profile, energy homeostasis, and anti-oxidant systems in NASH.Cells2020;9:1237 PMCID:PMC7290333

[22]

Barth BM,Toran PT.Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia.Blood Adv2019;3:2598-603 PMCID:PMC6737412

[23]

Zhang X,Toyoshima M.Ceramide nanoliposomes as a MLKL-dependent, necroptosis-inducing, chemotherapeutic reagent in ovarian cancer.Mol Cancer Ther2018;17:50-9 PMCID:PMC5752574

[24]

Li G,Kimchi ET.Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice.Gastroenterology2018;154:1024-1036.e9 PMCID:PMC5908238

[25]

Shin M,Donvito G.Liposomal delivery of diacylglycerol lipase-beta inhibitors to macrophages dramatically enhances selectivity and efficacy in vivo.Mol Pharm2018;15:721-8 PMCID:PMC5837917

[26]

Nisini R,Mariotti S,Fraziano M.The multirole of liposomes in therapy and prevention of infectious diseases.Front Immunol2018;9:155 PMCID:PMC5807682

[27]

Ponzoni M,Di Paolo D,Brignole C.Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer.Int J Mol Sci2018;19:1953 PMCID:PMC6073303

[28]

Saremi SS,Ghoorchian R.The role of nanoliposome bilayer composition containing soluble leishmania antigen on maturation and activation of dendritic cells.Iran J Basic Med Sci2018;21:536-45 PMCID:PMC6000213

[29]

Kelly C,Cryan SA.Targeted liposomal drug delivery to monocytes and macrophages.J Drug Deliv2011;2011:727241 PMCID:PMC3065850

[30]

Fidler IJ.Targeting of immunomodulators to mononuclear phagocytes for therapy of cancer.Adv Drug Deliv Rev1988;2:69-106

[31]

Fan Y.Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy.Vaccines (Basel)2015;3:662-85 PMCID:PMC4586472

[32]

Wang X,Yan A.Kdo2 -lipid A: structural diversity and impact on immunopharmacology.Biol Rev Camb Philos Soc2015;90:408-27 PMCID:PMC4402001

[33]

Sasaki H.Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors.Biophys J2008;95:986-93 PMCID:PMC2440428

[34]

Raetz CR,Reynolds CM.Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4.J Lipid Res2006;47:1097-111

[35]

Chiang CL,Coukos G.Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines.Int Rev Immunol2011;30:150-82

[36]

Sims K,Kelly S.Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy.J Biol Chem2010;285:38568-79 PMCID:PMC2992289

[37]

Mata-Haro V,Martin M,Casella CR.The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.Science2007;316:1628-32

[38]

Livingston PO,Pinsky CM,Old LJ.The serologic response of patients with stage II melanoma to allogeneic melanoma cell vaccines.Cancer1985;56:2194-200.

[39]

Slingluff CL Jr,Olson W.Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens.J Clin Oncol2008;26:4973-80 PMCID:PMC2652084

[40]

Benati D,Lambotte O.Public T cell receptors confer high-avidity CD4 responses to HIV controllers.J Clin Invest2016;126:2093-108 PMCID:PMC4887161

[41]

Slingluff CL Jr,Hogan KT.Evaluation of the sentinel immunized node for immune monitoring of cancer vaccines.Ann Surg Oncol2008;15:3538-49 PMCID:PMC2997393

[42]

Tiet P.Exploiting homing abilities of cell carriers: targeted delivery of nanoparticles for cancer therapy.Biochem Pharmacol2017;145:18-26 PMCID:PMC5681359

[43]

Cisterna BA,Choi WI,Farokhzad OC.Targeted nanoparticles for colorectal cancer.Nanomedicine (Lond)2016;11:2443-56 PMCID:PMC5619175

[44]

Tassa C,Lewis TA.Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles.Bioconjug Chem2010;21:14-9 PMCID:PMC2902264

[45]

Socas LB, Ambroggio EE. The influence of myristoylation, liposome surface charge and nucleic acid interaction in the partition properties of HIV-1 Gag-N-terminal peptides to membranes.Biochim Biophys Acta Biomembr2020;1862:183421

[46]

Stolk DA,Vree J.Lipo-based vaccines as an approach to target dendritic cells for induction of T- and iNKT cell responses.Front Immunol2020;11:990 PMCID:PMC7267035

[47]

Hu Y,Blackwell CM.Long-term outcomes of helper peptide vaccination for metastatic melanoma.Ann Surg2015;262:456-64; discussion 462 PMCID:PMC4756583

[48]

Cho HI.Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects.Cancer Res2009;69:9012-9 PMCID:PMC2789207

[49]

Eggermont AM,Grob JJ.Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy.N Engl J Med2016;375:1845-55 PMCID:PMC5648545

[50]

Barrios K.TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers.Cancer Immunol Immunother2012;61:1307-17 PMCID:PMC3446251

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/