Resistance to immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer

Yunchang Li , Lanlin Hu , Xinhao Peng , Huasheng Xu , Bo Tang , Chuan Xu

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (1) : 129 -46.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (1) :129 -46. DOI: 10.20517/cdr.2021.102
review-article

Resistance to immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer

Author information +
History +
PDF

Abstract

Non-small cell lung cancer (NSCLC) patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation are associated with significant clinical heterogeneity and a poor prognosis to standard NSCLC therapies such as surgical resection, radiotherapy, chemotherapies, and targeted medicines. However, the application of immune checkpoints inhibitors (ICIs) has dramatically altered the therapeutic pattern of NSCLC management. Clinical studies have indicated that some KRAS-mutant NSCLC patients could benefit from ICIs; however, the responses in some patients are still poor. This review intends to elucidate the mechanisms of resistance to immunotherapy in KRAS-driven NSCLC and highlight the TME functions altered by immunoinhibitors, immunostimulators, and cancer metabolism. These metabolic pathways could potentially be promising approaches to overcome immunotherapy resistance.

Keywords

Non-small cell lung cancer / KRAS mutation / immune checkpoints inhibitors / tumor microenvironments / cancer metabolism.

Cite this article

Download citation ▾
Yunchang Li, Lanlin Hu, Xinhao Peng, Huasheng Xu, Bo Tang, Chuan Xu. Resistance to immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer. Cancer Drug Resistance, 2022, 5(1): 129-46 DOI:10.20517/cdr.2021.102

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Chen J,Wang Z.LINC00173.v1 promotes angiogenesis and progression of lung squamous cell carcinoma by sponging miR-511-5p to regulate VEGFA expression.Mol Cancer2020;19:98 PMCID:PMC7260858

[3]

Gridelli C,Carbone DP.Non-small-cell lung cancer.Nat Rev Dis Primers2015;1:15009

[4]

Sequist LV,Senzer NN.Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer.J Clin Oncol2010;28:4953-60 PMCID:PMC4676802

[5]

Shepherd FA,Le Teuff G.LACE-Bio Collaborative GroupPooled analysis of the prognostic and predictive effects of TP53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy.J Clin Oncol2017;35:2018-27 PMCID:PMC6075828

[6]

Garassino MC,Rusconi P.Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer.Ann Oncol2011;22:235-7

[7]

Lee CK,Lord S.Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis.J Thorac Oncol2017;12:403-7

[8]

FDA approves first KRAS inhibitor: Sotorasib.Cancer Discov2021;11:OF4

[9]

Reck M,Garassino M.Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches.Ann Oncol2021;32:1101-10

[10]

Wang M,Boshoff C.Toward personalized treatment approaches for non-small-cell lung cancer.Nat Med2021;27:1345-56

[11]

Ghimessy A,Laszlo V.Current therapy of KRAS-mutant lung cancer.Cancer Metastasis Rev2020;39:1159-77 PMCID:PMC7680319

[12]

Galland L,Lecuelle J.Prognostic value of thyroid transcription factor-1 expression in lung adenocarcinoma in patients treated with anti PD-1/PD-L1.Oncoimmunology2021;10:1957603 PMCID:PMC8331027

[13]

Arbour KC,Plodkowski AJ.Treatment outcomes and clinical characteristics of patients with KRAS-G12C-mutant non-small cell lung cancer.Clin Cancer Res2021;27:2209-15

[14]

Sun L,Cohen RB,Mamtani R.Association between KRAS variant status and outcomes with first-line immune checkpoint inhibitor-based therapy in patients with advanced non-small-cell lung cancer.JAMA Oncol2021;7:937-9 PMCID:PMC8050787

[15]

Mazieres J,Lusque A.Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry.Ann Oncol2019;30:1321-8 PMCID:PMC7389252

[16]

Jeanson A,Souquet-Bressand M.Efficacy of immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer (NSCLC).J Thorac Oncol2019;14:1095-101

[17]

Borghaei H,Horn L.Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer.N Engl J Med2015;373:1627-39 PMCID:PMC5705936

[18]

Mok TSK,Kudaba I.Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial.Lancet2019;393:1819-30

[19]

Gadgeel S,Speranza G.Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer.J Clin Oncol2020;38:1505-17

[20]

Kim JH,Kim BJ.Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: a meta-analysis and review.Oncotarget2017;8:48248-52 PMCID:PMC5564642

[21]

Passiglia F,Alabiso O.Efficacy of nivolumab in pre-treated non-small-cell lung cancer patients harbouring KRAS mutations.Br J Cancer2019;120:57-62 PMCID:PMC6325128

[22]

Skoulidis F,Diao L.Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities.Cancer Discov2015;5:860-77 PMCID:PMC4527963

[23]

Skoulidis F,Greenawalt DM.STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.Cancer Discov2018;8:822-35 PMCID:PMC6030433

[24]

Dong ZY,Zhang XC.Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma.Clin Cancer Res2017;23:3012-24

[25]

Bai R,Li L.Mechanisms of cancer resistance to immunotherapy.Front Oncol2020;10:1290 PMCID:PMC7425302

[26]

Jackson CM,Lim M.Mechanisms of immunotherapy resistance: lessons from glioblastoma.Nat Immunol2019;20:1100-9

[27]

Blank CU,Held W.Defining ‘T cell exhaustion’.Nat Rev Immunol2019;19:665-74 PMCID:PMC7286441

[28]

Bai J,Li X,Han W.Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade.Oncotarget2017;8:110693-707 PMCID:PMC5746415

[29]

Patsoukis N,Strauss L.Revisiting the PD-1 pathway.Sci Adv2020;6:eabd2712 PMCID:PMC7500922

[30]

Wu X,Chen Y.Application of PD-1 blockade in cancer immunotherapy.Comput Struct Biotechnol J2019;17:661-74 PMCID:PMC6558092

[31]

Chen G,Zhang W.Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature2018;560:382-6 PMCID:PMC6095740

[32]

Cha JH,Li CW,Hung MC.Mechanisms controlling PD-L1 expression in cancer.Mol Cell2019;76:359-70 PMCID:PMC6981282

[33]

Coelho MA,Rana S.Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA.Immunity2017;47:1083-99.e6 PMCID:PMC5746170

[34]

Hashimoto S,Hashimoto A.ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer.Proc Natl Acad Sci U S A2019;116:17450-9 PMCID:PMC6717289

[35]

Lambrecht BN,Fahy JV.The cytokines of asthma.Immunity2019;50:975-91

[36]

Borish LC.2. Cytokines and chemokines.J Allergy Clin Immunol2003;111:S460-75

[37]

Ozga AJ,Luster AD.Chemokines and the immune response to cancer.Immunity2021;54:859-74 PMCID:PMC8434759

[38]

Turner MD,Hurst T.Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease.Biochim Biophys Acta2014;1843:2563-82

[39]

Liao W,Boutin AT.KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer.Cancer Cell2019;35:559-72.e7 PMCID:PMC6467776

[40]

Yang Z,Wang B.USP12 downregulation orchestrates a protumourigenic microenvironment and enhances lung tumour resistance to PD-1 blockade.Nat Commun2021;12:4852 PMCID:PMC8357983

[41]

Peng DH,Diao L.Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53 mutant lung cancers.Nat Commun2021;12:2606 PMCID:PMC8110980

[42]

Hamarsheh S,Brummer T.Immune modulatory effects of oncogenic KRAS in cancer.Nat Commun2020;11:5439 PMCID:PMC7595113

[43]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[44]

McGuirk S,St-Pierre J.Metabolic fitness and plasticity in cancer progression.Trends Cancer2020;6:49-61

[45]

Kimmelman AC.Metabolic dependencies in RAS-driven cancers.Clin Cancer Res2015;21:1828-34 PMCID:PMC4400826

[46]

Kerk SA,Shah YM.Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment.Nat Rev Cancer2021;21:510-25

[47]

Lunt SY.Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.Annu Rev Cell Dev Biol2011;27:441-64

[48]

Coussement P,Peters G,De Mey M.Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway.Biotechnol Adv2020;40:107512

[49]

Racker E,Feldman R.Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes.Proc Natl Acad Sci U S A1985;82:3535-8 PMCID:PMC397819

[50]

Ying H,Lyssiotis CA.Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism.Cell2012;149:656-70 PMCID:PMC3472002

[51]

Wang F,Wertz R.p38γ MAPK is essential for aerobic glycolysis and pancreatic tumorigenesis.Cancer Res2020;80:3251-64

[52]

Sasaki H,Yokota K.Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas.Mol Med Rep2012;5:599-602

[53]

Amendola CR,Parker SJ.KRAS4A directly regulates hexokinase 1.Nature2019;576:482-6 PMCID:PMC6923592

[54]

Wang H,Zhang Y,Deng Y.Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth.Cancer Cell Int2016;16:9 PMCID:PMC4755025

[55]

Kim J,Cai F.The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer.Nat Metab2020;2:1401-12 PMCID:PMC7744327

[56]

Frauwirth KA,Harris MH.The CD28 signaling pathway regulates glucose metabolism.Immunity2002;16:769-77

[57]

Fox CJ,Thompson CB.Fuel feeds function: energy metabolism and the T-cell response.Nat Rev Immunol2005;5:844-52

[58]

Cham CM,O'Keefe JP.Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells.Eur J Immunol2008;38:2438-50 PMCID:PMC3008428

[59]

Chang CH,O'Sullivan D.Metabolic competition in the tumor microenvironment is a driver of cancer progression.Cell2015;162:1229-41 PMCID:PMC4864363

[60]

Ho PC,Macintyre AN.Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses.Cell2015;162:1217-28 PMCID:PMC4567953

[61]

Cong J,Zheng X.Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression.Cell Metab2018;28:243-55.e5

[62]

Guak H,Ma EH.Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration.Nat Commun2018;9:2463 PMCID:PMC6018630

[63]

Xie H,Ren JG.Targeting lactate dehydrogenase--a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells.Cell Metab2014;19:795-809 PMCID:PMC4096909

[64]

McCleland ML,Deming L.Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas.Clin Cancer Res2013;19:773-84

[65]

Li X,Meisenhelder J.Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis.Mol Cell2016;61:705-19 PMCID:PMC4888784

[66]

McDonald PC,Brown WS.Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia.Gastroenterology2019;157:823-37

[67]

Certo M,Pucino V,Mauro C.Lactate modulation of immune responses in inflammatory versus tumour microenvironments.Nat Rev Immunol2021;21:151-61

[68]

Brand A,Koehl GE.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells.Cell Metab2016;24:657-71

[69]

Colegio OR,Szabo AL.Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.Nature2014;513:559-63 PMCID:PMC4301845

[70]

Fischer K,Voelkl S.Inhibitory effect of tumor cell-derived lactic acid on human T cells.Blood2007;109:3812-9

[71]

Walther TC,Farese RV Jr.Lipid droplet biogenesis.Annu Rev Cell Dev Biol2017;33:491-510 PMCID:PMC6986389

[72]

Murakami M.Phospholipase A2.J Biochem2002;131:285-92

[73]

Kawahara K,Inazumi T,Sugimoto Y.Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors.Biochim Biophys Acta2015;1851:414-21

[74]

Jiang X,Conrad M.Ferroptosis: mechanisms, biology and role in disease.Nat Rev Mol Cell Biol2021;22:266-82 PMCID:PMC8142022

[75]

Qiao S,Vivekanandan V.REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors.Genes Dev2020;34:751-66 PMCID:PMC7263146

[76]

Gouw AM,Margulis K.Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma.Proc Natl Acad Sci U S A2017;114:4300-5 PMCID:PMC5410819

[77]

Biffo S,Ricciardi S.Crosstalks between translation and metabolism in cancer.Curr Opin Genet Dev2018;48:75-81

[78]

Uras IZ,Casanova E.Targeting KRAS mutant non-small-cell lung cancer: past, present and future.Int J Mol Sci2020;21:4325 PMCID:PMC7352653

[79]

Koundouros N.Reprogramming of fatty acid metabolism in cancer.Br J Cancer2020;122:4-22 PMCID:PMC6964678

[80]

Harizi H,Gualde N.Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology.Trends Mol Med2008;14:461-9

[81]

Ricoult SJ,Ben-Sahra I.Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP.Oncogene2016;35:1250-60 PMCID:PMC4666838

[82]

Man J,Joshua AM.Fats and mets, KRAS-driven lipid dysregulation affects metastatic potential in pancreatic cancer.Cancer Res2020;80:4886-7

[83]

Jeon SM,Hay N.AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress.Nature2012;485:661-5 PMCID:PMC3607316

[84]

Song X.Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases.Front Neurosci2020;14:267 PMCID:PMC7186402

[85]

Galan-Cobo A,Qu X.LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma.Cancer Res2019;79:3251-67 PMCID:PMC6606351

[86]

Corn KC,Rafat M.Lipids in the tumor microenvironment: from cancer progression to treatment.Prog Lipid Res2020;80:101055 PMCID:PMC7674189

[87]

Manzo T,Anderson KG.Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells.J Exp Med2020;217:e20191920 PMCID:PMC7398173

[88]

Gao A,Lin W.Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity.J Immunother Cancer2021;9:e001536 PMCID:PMC7929805

[89]

Yin X,Wu B.PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction.Cell Rep2020;33:108278 PMCID:PMC7771208

[90]

Goor SA, Dijck-Brouwer DA, Fokkema MR, van der Iest TH, Muskiet FA. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice.Prostaglandins Leukot Essent Fatty Acids2008;78:159-69

[91]

Qari HA.Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation.J Bioenerg Biomembr2020;52:27-38

[92]

Backlund MG,Wang D. Ras up-regulation of cyclooxygenase-2. Regulators and effectors of small GTPases: ras family. Elsevier; 2006. p. 401-10.

[93]

Sharma S,Zhu L.Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer.Cancer Res2005;65:5211-20

[94]

Basingab FS,Morgan DJ.IFNγ-dependent interactions between ICAM-1 and LFA-1 counteract prostaglandin E2-mediated inhibition of antitumor CTL responses.Cancer Immunol Res2016;4:400-11

[95]

Böttcher JP,Chakravarty P.NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control.Cell2018;172:1022-37.e14 PMCID:PMC5847168

[96]

Raccosta L,Corna G,Moresco M.Cholesterol metabolites and tumor microenvironment: the road towards clinical translation.Cancer Immunol Immunother2016;65:111-7

[97]

Ma X,Lu Y.Cholesterol Induces CD8+ T cell exhaustion in the tumor microenvironment.Cell Metab2019;30:143-56.e5 PMCID:PMC7061417

[98]

Hall Z,Burkhart DL,Evan GI.Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer.J Lipid Res2020;61:1390-9 PMCID:PMC7604716

[99]

Wei Z,Cheng C,Yi P.Metabolism of amino acids in cancer.Front Cell Dev Biol2020;8:603837 PMCID:PMC7835483

[100]

Cruzat V,Noel Keane K,Newsholme P.Glutamine: metabolism and immune function, supplementation and clinical translation.Nutrients2018;10:1564 PMCID:PMC6266414

[101]

Bernfeld E.Glutamine as an essential amino acid for KRas-driven cancer cells.Trends Endocrinol Metab2019;30:357-68

[102]

Meijer TWH,Lok J.Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes.Thorac Cancer2019;10:2289-99 PMCID:PMC6885430

[103]

Kandasamy P,Nydegger DT.Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1.Mol Oncol2021;15:2782-800 PMCID:PMC8486573

[104]

Najumudeen AK,Fey SK.CRUK Rosetta Grand Challenge ConsortiumThe amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer.Nat Genet2021;53:16-26

[105]

Fu Q,Wang Y.Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion.Eur Urol2019;75:752-63

[106]

Song M,Chae CS.IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity.Nature2018;562:423-8 PMCID:PMC6237282

[107]

Sun HW,Chen HT.Glutamine deprivation promotes the generation and mobilization of MDSCs by enhancing expression of G-CSF and GM-CSF.Front Immunol2020;11:616367 PMCID:PMC7884351

[108]

Liu PS,Li X.α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.Nat Immunol2017;18:985-94

[109]

Parra ER,Zhang J.Immunohistochemical and image analysis-based study shows that several immune checkpoints are co-expressed in non-small cell lung carcinoma tumors.J Thorac Oncol2018;13:779-91

[110]

Pranzini E,Paoli P,Taddei ML.Metabolic reprogramming in anticancer drug resistance: a focus on amino acids.Trends Cancer2021;7:682-99

[111]

Holmgaard RB,Li Y.Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner.Cell Rep2015;13:412-24 PMCID:PMC5013825

[112]

Botticelli A,Lionetto L.Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC?.J Transl Med2018;16:219 PMCID:PMC6080500

[113]

Doubleday PF,Ntai I.Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells.FEBS J2021;288:6683-99 PMCID:PMC8648997

[114]

Moldogazieva NT,Terentiev AA.Metabolic heterogeneity of cancer cells: an interplay between HIF-1, GLUTs, and AMPK.Cancers (Basel)2020;12:862 PMCID:PMC7226606

[115]

Baek G,Hu Z.MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies.Cell Rep2014;9:2233-49

[116]

Kerr EM.Metabolic rewiring in mutant Kras lung cancer.FEBS J2018;285:28-41 PMCID:PMC6005344

[117]

Kawada K,Sakai Y.Targeting metabolic reprogramming in KRAS-driven cancers.Int J Clin Oncol2017;22:651-9

[118]

Pupo E,Middonti E,Lanzetti L.KRAS-driven metabolic rewiring reveals novel actionable targets in cancer.Front Oncol2019;9:848 PMCID:PMC6730590

[119]

Michalek RD,Jacobs SR.Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.J Immunol2011;186:3299-303 PMCID:PMC3198034

[120]

Reilly NA,Kuiper J,Wouter Jukema J.Effects of fatty acids on T cell function: role in atherosclerosis.Nat Rev Cardiol2021;18:824-37

[121]

Ringel AE,Baker GJ.Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity.Cell2020;183:1848-66.e26 PMCID:PMC8064125

[122]

Biswas SK.Metabolic reprogramming of immune cells in cancer progression.Immunity2015;43:435-49

[123]

Patel CH,Horton MR.Targeting metabolism to regulate immune responses in autoimmunity and cancer.Nat Rev Drug Discov2019;18:669-88

[124]

Cerezo M.Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy.Cell Death Dis2020;11:964 PMCID:PMC7658964

[125]

Xia L,Lin J.The cancer metabolic reprogramming and immune response.Mol Cancer2021;20:28 PMCID:PMC7863491

[126]

Baraibar I,Rodríguez-Remírez M.Id1 and PD-1 combined blockade impairs tumor growth and survival of KRAS-mutant lung cancer by stimulating PD-L1 expression and tumor infiltrating CD8+ T cells.Cancers (Basel)2020;12:3169 PMCID:PMC7693788

[127]

Lastwika KJ,Li QK.Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer.Cancer Res2016;76:227-38

[128]

Jiang ZB,Xu C.Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer.Cancer Lett2021;515:36-48

[129]

Nam GH,Jung H.Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer.J Immunother Cancer2021;9:e002474 PMCID:PMC8327837

[130]

Zhang M,Wang P.CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer.Nat Commun2020;11:6119 PMCID:PMC7704643

[131]

Adeegbe DO,Hattersley MM.BET bromodomain inhibition cooperates with PD-1 blockade to facilitate antitumor response in Kras-mutant non-small cell lung cancer.Cancer Immunol Res2018;6:1234-45 PMCID:PMC6170698

[132]

Li R,Crosson W.Inhibition of granulocytic myeloid-derived suppressor cells overcomes resistance to immune checkpoint inhibition in LKB1-deficient non-small cell lung cancer.Cancer Res2021;81:3295-308

[133]

Canon J,Saiki AY.The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.Nature2019;575:217-23

[134]

Briere DM,Calinisan A.The KRASG12C inhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy.Mol Cancer Ther2021;20:975-85 PMCID:PMC8444277

[135]

Onconova Therapeutics initiates phase 1/2a study of rigosertib plus nivolumab to treat KRAS+ lung adenocarcinoma. Available from: http://www.pharmabiz.com/NewsDetails.aspx?aid=129076&sid=2 [Last accessed on 17 Jan 2022]

[136]

Hellmann MD,Bernabe Caro R.Nivolumab plus ipilimumab in advanced non-small-cell lung cancer.N Engl J Med2019;381:2020-31

[137]

Theelen WSME,Lalezari F.Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial.JAMA Oncol2019;5:1276-82 PMCID:PMC6624814

[138]

Zhou CC,Wang YN.Efficacy of PD-1 monoclonal antibody SHR-1210 plus apatinib in patients with advanced nonsquamous NSCLC with wild-type EGFR and ALK.J Clin Oncol2019;37:9112

[139]

Sullivan MR,Lewis CA.Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability.Elife2019;8:e44235 PMCID:PMC6510537

[140]

Barbi J,Pabla S.Visceral obesity promotes lung cancer progression-toward resolution of the obesity paradox in lung cancer.J Thorac Oncol2021;16:1333-48

[141]

Marsh J,Seyfried TN.Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet.Nutr Metab (Lond)2008;5:33 PMCID:PMC2607273

[142]

Yang J,Pan W.Fucoidan-supplemented diet potentiates immune checkpoint blockage by enhancing antitumor immunity.Front Cell Dev Biol2021;9:733246 PMCID:PMC8382313

[143]

Malczewski AB,Coward JIG.Enhancing checkpoint inhibitor therapy in solid tissue cancers: the role of diet, the microbiome & microbiome-derived metabolites.Front Immunol2021;12:624434 PMCID:PMC8293987

[144]

Torrence ME.Nutrient sensing in cancer.Annu Rev Cancer Biol2018;2:251-69

[145]

Zitvogel L,Kroemer G.Nutrition, inflammation and cancer.Nat Immunol2017;18:843-50

[146]

Hotamisligil GS.Inflammation, metaflammation and immunometabolic disorders.Nature2017;542:177-85

[147]

Soldati L,Jirillo E,Marincola FM.The influence of diet on anti-cancer immune responsiveness.J Transl Med2018;16:75 PMCID:PMC5859494

[148]

Allen BG,Anderson CM.Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism.Redox Biol2014;2:963-70 PMCID:PMC4215472

[149]

Sukumar M,Ji Y.Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function.J Clin Invest2013;123:4479-88 PMCID:PMC3784544

[150]

Almeida L,Carriche G,Sparwasser T.CD4+ T-cell differentiation and function: unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria.J Allergy Clin Immunol2021;148:16-32

[151]

Giovanelli P,Cubillos-Ruiz JR.Dendritic cell metabolism and function in tumors.Trends Immunol2019;40:699-718

[152]

Bantug GR,Kroemer G.The spectrum of T cell metabolism in health and disease.Nat Rev Immunol2018;18:19-34

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/