Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics

Anna Ulldemolins , Joaquin Seras-Franzoso , Fernanda Andrade , Diana Rafael , Ibane Abasolo , Petra Gener , Simo Schwartz Jr

Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (1) : 44 -68.

PDF
Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (1) :44 -68. DOI: 10.20517/cdr.2020.59
Review
review-article

Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics

Author information +
History +
PDF

Abstract

Advanced cancer is still considered an incurable disease because of its metastatic spread to distal organs and progressive gain of chemoresistance. Even though considerable treatment progress and more effective therapies have been achieved over the past years, recurrence in the long-term and undesired side effects are still the main drawbacks of current clinical protocols. Moreover, a majority of chemotherapeutic drugs are highly hydrophobic and need to be diluted in organic solvents, which cause high toxicity, in order to reach effective therapeutic dose. These limitations of conventional cancer therapies prompted the use of nanomedicine, the medical application of nanotechnology, to provide more effective and safer cancer treatment. Potential of nanomedicines to overcome resistance, ameliorate solubility, improve pharmacological profile, and reduce adverse effects of chemotherapeutical drugs is thus highly regarded. Their use in the clinical setting has increased over the last decade. Among the various existing nanosystems, nanoparticles have the ability to transform conventional medicine by reducing the adverse effects and providing a controlled release of therapeutic agents. Also, their small size facilitates the intracellular uptake. Here, we provide a closer review of clinical prospects and mechanisms of action of nanomedicines to overcome drug resistance. The significance of specific targeting towards cancer cells is debated as well.

Keywords

Drug delivery systems / resistance / nanomedicine / cancer treatment

Cite this article

Download citation ▾
Anna Ulldemolins, Joaquin Seras-Franzoso, Fernanda Andrade, Diana Rafael, Ibane Abasolo, Petra Gener, Simo Schwartz Jr. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resistance, 2021, 4(1): 44-68 DOI:10.20517/cdr.2020.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

The Global Cancer Observatory, Europe Globocan 2018, (2020) 1-2. Available from: https://gco.iarc.fr/today/data/factsheets/populations/908-europe-fact-sheets.pdf. [Last accessed on 19 Nov 2020]

[2]

Ferlay J,Soerjomataram I,Randi G.Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018..Eur J Cancer2018;103:356-87

[3]

Wang X,Chen X.Drug resistance and combating drug resistance in cancer..Cancer Drug Resist2019;2:141-60

[4]

Mansoori B,Davudian S,Baradaran B.The different mechanisms of cancer drug resistance : a brief review..Tabriz Univ Med Sci2017;7:339-48 PMCID:PMC5651054

[5]

Longacre M,Sarkar S.Drug resistance in cancer : an overview..Cancers (Basel)2014;6:1769-92 PMCID:PMC4190567

[6]

Xue X.Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology..Chin J Cancer2012;31:100-9 PMCID:PMC3777470

[7]

Robey RW,Hall MD,Bates SE.Revisiting the role of efflux pumps in multidrug-resistant cancer..Nat Rev Cancer2018;18:452-64 PMCID:PMC6622180

[8]

Gener P,Fernández Y.Cancer stem cells and personalized cancer nanomedicine..Nanomedicine (Lond)2016;11:307-20

[9]

Lepeltier E,Rizzolio F.Nanomedicine to target multidrug resistant tumors..Drug Resist Updat2020;52:100704

[10]

Allocati N,Di Ilio C.Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases..Oncogenesis2018;7:8 PMCID:PMC5833873

[11]

Westover D,Cho BC,Paz-Ares L.Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors..Ann Oncol2018;29:i10-9 PMCID:PMC6454547

[12]

Wu S.Management of acquired resistance to EGFR TKI - targeted therapy in advanced non-small cell lung cancer..Mol Cancer2018;17:1-14 PMCID:PMC5817870

[13]

Wang S,Liu D.EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance..Cancer Lett2017;385:51-4

[14]

Desai A,Gerson SL.Advances in therapeutic targeting of the DNA damage response in cancer..DNA Repair (Amst)2018;66-67:24-9 PMCID:PMC6005187

[15]

Hosoya N.Targeting DNA damage response in cancer therapy..Cancer Sci2014;105:370-88 PMCID:PMC4317796

[16]

Li D.Olaparib nanoparticles potentiated radiosensitization effects on lung cancer..Int J Nanomedicine2018;13:8461-72 PMCID:PMC6294076

[17]

Mohammad RM,Lowe L.Broad targeting of resistance to apoptosis in cancer,.Semin Cancer Biol2015;35:S78-103 PMCID:PMC4720504

[18]

Zhou Y,Yang Y.Paraptosis-inducing nanomedicine overcomes cancer drug resistance for a potent cancer therapy..Small2018;14:1702446

[19]

Sepand MR,Kempson IM.Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook..Nanomedicine2020;29:102243

[20]

Roberti A,Torrecillas R,Fernandez AF.Epigenetics in cancer therapy and nanomedicine..Clin Epigenetics2019;11:1-18 PMCID:PMC6524244

[21]

Fardi M,Farshdousti Hagh M.Epigenetic mechanisms as a new approach in cancer treatment: an updated review..Genes Dis2018;5:304-11 PMCID:PMC6303480

[22]

Takeshima H.Accumulation of genetic and epigenetic alterations in normal cells and cancer risk..NPJ Precis Oncol2019;3:7 PMCID:PMC6403339

[23]

Cheng Y,Wang M.Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials..Signal Transduct Target Ther2019;4:62 PMCID:PMC6915746

[24]

Gener P,Callejo PG.Review article dynamism, sensitivity, and consequences of mesenchymal and stem-like phenotype of cancer cells..Stem Cells Int2018;2018:4516454 PMCID:PMC6199882

[25]

LeBleu VS.A peek into cancer-associated fibroblasts: origins, functions and translational impact..Dis Model Mech2018;11:dmm029447 PMCID:PMC5963854

[26]

Roma-Rodrigues C,Baptista PV.Targeting Tumor Microenvironment for Cancer Therapy..Int J Mol Sci2019;20:840 PMCID:PMC6413095

[27]

Tomita H,Tanaka T.Aldehyde dehydrogenase 1A1 in stem cells and cancer..Oncotarget2016;7:11018-32 PMCID:PMC4905455

[28]

Gener P,Seras-Franzoso J.The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles..Nanomedicine (Lond)2020;doi: 10.2217/nnm-2020-0099

[29]

Yu AM,Yu AH.RNA therapy: are we using the right molecules?.Pharmacol Ther2019;196:91-104 PMCID:PMC6450780

[30]

Gómez-Aguado I,Vicente-Pascual M,Solinís .Nanomedicines to deliver mRNA: state of the art and future perspectives..Nanomaterials (Basel)2020;10:364 PMCID:PMC7075285

[31]

Vaughan HJ,Tzeng SY.Cancer-targeting nanoparticles for combinatorial nucleic acid delivery..Adv Mater2020;32:e1901081 PMCID:PMC6923623

[32]

Rafael D,Andrade F.AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells..Drug Deliv2018;25:961-72 PMCID:PMC6060707

[33]

Gener P,Seras-Franzoso J.Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells..Cancers (Basel)2019;11:1058 PMCID:PMC6721305

[34]

Davis ME,Choi CH.Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles..Nature2010;464:1067-70 PMCID:PMC2855406

[35]

Pearce AK.Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine..Bioconjug Chem2019;30:2300-11

[36]

Tabernero J,LoRusso PM.First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement..Cancer Discov2013;3:406-17

[37]

Schultheis B,Santel A.First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors..J Clin Oncol2014;32:4141-8

[38]

Wagner MJ,McArthur MJ.Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA)..Mol Cancer Ther2017;16:1114-23 PMCID:PMC5457703

[39]

Demeure MJ,Ejadi S.A phase I/II study of TKM-080301, a PLK1 -targeted RNAi in patients with adrenocortical cancer (ACC)..JCO2016;34:2547-2547

[40]

Jo DH,Lee TG.Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases..Nanomedicine2015;11:1603-11

[41]

Wicki A,Balasubramanian V.Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications..J Control Release2015;200:138-57

[42]

Boyles M, Powell L, Kermanizadeh A, et al. An overview of nanoparticle biocompatibility for their use in nanomedicine. 2017. Available from: https://www.researchgate.net/publication/312334531_An_Overview_of_Nanoparticle_Biocompatibility_for_Their_Use_in_Nanomedicine_Innovation_and_Production. [Last accessed on 19 Nov 2020]

[43]

Mishra P,Dey R.PEGylation in anti-cancer therapy: an overview..Asian J Pharm Sci2016;11:337-48

[44]

Tran S,Piel B.Cancer nanomedicine: a review of recent success in drug delivery..Clin Transl Med2017;6:44 PMCID:PMC5725398

[45]

Fülöp T,Vashegyi I.Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs..J Control Release2019;309:333-8

[46]

Campos J,Santini A.Solid lipid nanoparticles (SLN). Nanopharmaceuticals.2020;Elsevier1-15

[47]

Bakhtiary Z,Aghanejad A.Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer..Drug Dev Ind Pharm2017;43:1244-53

[48]

Soni N,Pandey H,Kesharwani P.Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles..J Colloid Interface Sci2016;481:107-16

[49]

Gener P,Xandri-Monje H.Zileuton™ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells..Nanomedicine2020;24:102106

[50]

Yu X,Xie C.An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line..Int J Nanomedicine2015;10:6825-34 PMCID:PMC4636168

[51]

Zhou Y,Rhim JS.HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects..J Control Release2013;172:946-53 PMCID:PMC3858468

[52]

Ventola CL.Progress in nanomedicine: approved and investigational nanodrugs progress in nanomedicine..Pharmacol Ther2017;42:742-55 PMCID:PMC5720487

[53]

Li Y.Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment..J Biomed Nanotechnol2019;15:1-27

[54]

Watermann A.Mesoporous Silica nanoparticles as drug delivery vehicles in cancer..Nanomaterials (Basel)2017;7:189 PMCID:PMC5535255

[55]

Gabizon A,Uziely B.Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes 1..Cancer Res1994;54:987-92

[56]

Miele E,Miele E,Tomao S.Albumin-bound formulation of paclitaxel (Abraxane ® ABI-007) in the treatment of breast cancer..Int J Nanomedicine2009;4:99-106 PMCID:PMC2720743

[57]

Hamad I.Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug..Expert Opin Drug Deliv2008;5:205-19

[58]

Heo YA,Keam SJ.Pegaspargase: a review in acute lymphoblastic leukaemia..Drugs2019;79:767-77 PMCID:PMC6531401

[59]

Choi YH.Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics..J Pharm Invest2018;48:43-60 PMCID:PMC6244736

[60]

Louie AC.CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties..Int J Nanomedicine2019;14:3819-30 PMCID:PMC6537039

[61]

Liu B.Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer..Int J Nanomedicine2017;12:955-68 PMCID:PMC5293363

[62]

Katiyar SS,Rafeeqi TA,Khan W.Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment..Drug Deliv2016;23:2608-16

[63]

Khaledi S,Hamidi S,Davaran S.Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin..J Biomater Sci Polym Ed2020;31:1107-26

[64]

Gabizon AA,Golan T.Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients..Invest New Drugs2020;38:1411-20

[65]

Chao J,Frankel P.Pilot trial of CRLX101 in patients with advanced, chemotherapy-refractory gastroesophageal cancer..J Gastrointest Oncol2017;8:962-9 PMCID:PMC5750185

[66]

Golombek SK,Theek B.Tumor targeting via EPR: strategies to enhance patient responses..Adv Drug Deliv Rev2018;130:17-38 PMCID:PMC6130746

[67]

Islam W,Imamura T.Augmentation of the enhanced permeability and retention effect with nitric oxide-generating agents improves the therapeutic effects of nanomedicines..Mol Cancer Ther2018;17:2643-53

[68]

Azzopardi EA,Thomas DW.The enhanced permeability retention effect: a new paradigm for drug targeting in infection..J Antimicrob Chemother2013;68:257-74

[69]

Xu X,Zhang X.Cancer nanomedicine: from targeted delivery to combination therapy..Trends Mol Med2016;21:223-32 PMCID:PMC4385479

[70]

Salvioni L,Bertolini JA,Colombo M.Thirty years of cancer nanomedicine: success, frustration, and hope..Cancers (Basel)2019;11:1855 PMCID:PMC6966668

[71]

Adamo G,Ghersi G.Chapter 3 - functionalization of nanoparticles in specific targeting and mechanism release.2017;Elsevier Inc.doi: 10.1016/B978-0-323-46142-9/00003-7

[72]

Subbiah R,Yun KS.Nanoparticles: functionalization and multifunctional applications in biomedical sciences..Curr Med Chem2010;17:4559-77

[73]

Thiruppathi R,Ganapathy M,Gulyás B.Nanoparticle functionalization and its potentials for molecular imaging..Adv Sci (Weinh)2017;4:1600279 PMCID:PMC5357986

[74]

Mout R,Rana S.Surface functionalization of nanoparticles for nanomedicine..Chem Soc Rev2012;41:2539-44 PMCID:PMC4102397

[75]

Gonda A,Shah JV.Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine..Med One2019;4: PMCID:PMC6779336

[76]

Valle JW,Newman C.A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction..Invest New Drugs2011;29:1029-37

[77]

Attia MF,Wallyn J,Vandamme TF.An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites..J Pharm Pharmacol2019;71:1185-98

[78]

Zununi Vahed S,Samiei M,Sharifi S.Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles..J Drug Target2019;27:292-9

[79]

Autio KA,Anderson J.Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial..JAMA Oncol2018;4:1344-51 PMCID:PMC6233779

[80]

Lopez S,Bellone S.Preclinical activity of sacituzumab govitecan (IMMU-132 ) in uterine and ovarian carcinosarcomas..Oncotarget2020;11:560-70 PMCID:PMC7007291

[81]

Munster P,LoRusso P.Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study..Br J Cancer2018;119:1086-93 PMCID:PMC6219487

[82]

Gener P,Sabat GR.Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells..Nanomedicine2015;11:1883-92

[83]

Souto EB,Campos JR,Silva AM.Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells..Eur J Pharm Sci2019;128:27-35

[84]

Li F,Liu J.A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer..Nat Commun2017;8:1390 PMCID:PMC5680242

[85]

Boondireke S,Durand A.Encapsulation of monomyristin into polymeric nanoparticles improved its in vitro antiproliferative activity against cervical cancer cells..Colloids Surf B Biointerfaces2019;176:9-17

[86]

Ni W,Liu Z.Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma..J Pharm Sci2019;108:1284-95

[87]

van der Meel R,Hennink WE.Cancer nanomedicines: oversold or underappreciated?.Expert Opin Drug Deliv2017;14:1-5 PMCID:PMC5404718

[88]

Sepantafar M,Mohammadi H.Engineered hydrogels in cancer therapy and diagnosis..Trends Biotechnol2017;35:1074-87

[89]

Villaverde G.Targeting strategies for improving the efficacy of nanomedicine in oncology..Beilstein J Nanotechnol2019;10:168-81 PMCID:PMC6350877

[90]

Tambe V,Chourasiya Y,Gorain B.Clinical aspects and regulatory requirements for nanomedicines. Basic Fundamentals of Drug Delivery.2019;Elsevier733-52

[91]

Miao L,Lin CM.The binding site barrier elicited by tumor associated fibroblasts interferes disposition of nanoparticles in the stroma-vessel type tumors..ACS Nano2016;10:9243-58 PMCID:PMC5515694

[92]

Libutti SK,Nilubol N.Targeting the invincible barrier for drug delivery in solid cancers: interstitial fluid pressure..Oncotarget2018;9:35723-5 PMCID:PMC6254664

[93]

Szebeni J,González-Fernández Á,Dobrovolskaia MA.Roadmap and strategy for overcoming infusion reactions to nanomedicines..Nat Nanotechnol2018;13:1100-8 PMCID:PMC6320688

[94]

Dobrovolskaia MA,Shvedova AA.Current understanding of interactions between nanoparticles and the immune system..Toxicol Appl Pharmacol2016;299:78-89 PMCID:PMC4811709

[95]

Murayama T.Patient-derived xenograft models of breast cancer and their application..Cells2019;8: PMCID:PMC6628218

[96]

Gazdar AF,Minna JD.From mice to men and back: an assessment of preclinical model systems for the study of lung cancers..J Thorac Oncol2016;11:287-99 PMCID:PMC4809191

[97]

Lammers T,Ashford M,Crommelin D.Cancer nanomedicine: Is targeting our target?.Nat Rev Mater2016;1:16069 PMCID:PMC5034892

[98]

Zhang YS.Advances in engineering hydrogels..Science2017;356:eaaf3627

[99]

Hu H,He B.A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel..J Control Release2015;220:189-200

[100]

Guo DD,Jiang HL.Synergistic effects of Akt1 shRNA and paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel on breast cancer..Biomaterials2012;33:2272-81

[101]

Ruivo CF,Silva M.The biology of cancer exosomes: insights and new perspectives..Cancer Res2017;77:6480-8

[102]

Steinbichler TB,Riechelmann H.The role of exosomes in cancer metastasis..Semin Cancer Biol2017;44:170-81

[103]

Kim J,Lee MS,Ihm C.Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells..Biochem Biophys Res Commun2016;478:643-8

[104]

Kosaka N.Decoding the secret of cancer by means of extracellular vesicles..J Clin Med2016;5:22 PMCID:PMC4773778

[105]

Kim MS,Zhao Y.Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells..Nanomedicine2016;12:655-64 PMCID:PMC4809755

[106]

Walker S,Pham A.Extracellular vesicle-based drug delivery systems for cancer treatment..Theranostics2019;9:8001-17 PMCID:PMC6857056

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/