Nanotechnological approaches for counteracting multidrug resistance in cancer

Chiara Martinelli , Marco Biglietti

Cancer Drug Resistance ›› 2020, Vol. 3 ›› Issue (4) : 1003 -1020.

PDF
Cancer Drug Resistance ›› 2020, Vol. 3 ›› Issue (4) :1003 -1020. DOI: 10.20517/cdr.2020.47
Perspective
review-article

Nanotechnological approaches for counteracting multidrug resistance in cancer

Author information +
History +
PDF

Abstract

Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.

Keywords

Multidrug resistance / cancer / nanotechnology / nanomedicine / nanocarriers / targeted delivery

Cite this article

Download citation ▾
Chiara Martinelli, Marco Biglietti. Nanotechnological approaches for counteracting multidrug resistance in cancer. Cancer Drug Resistance, 2020, 3(4): 1003-1020 DOI:10.20517/cdr.2020.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stewart BW, Wild CP. World Cancer Report 2014. World Health Organization; 2014. Available from: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014. [Last accessed on 22 Sep 2020]

[2]

Housman G,Heerboth S,Longacre M.Drug resistance in cancer: an overview..Cancers (Basel)2014;6:1769-92 PMCID:PMC4190567

[3]

Wu Q,Nie Y,Fan D.Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches..Cancer Lett2014;347:159-66

[4]

Longley DB.Molecular mechanisms of drug resistance..J Pathol2005;205:275-92

[5]

Kibria G,Harashima H.Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system..Arch Pharm Res2014;37:4-15

[6]

Provenzano PP.Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer..Br J Cancer2013;108:1-8 PMCID:PMC3553539

[7]

Khawar IA,Kuh HJ.Improving drug delivery to solid tumors: priming the tumor microenvironment..J Control Release2015;201:78-89

[8]

Yap TA,De Bono JS.Development of therapeutic combinations targeting major cancer signaling pathways..J Clin Oncol2013;31:1592-605

[9]

Lee MJ,Gardino AK,Sorger PK.Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks..Cell2012;149:780-94 PMCID:PMC3501264

[10]

Iyer AK,Ganta S.Role of integrated cancer nanomedicine in overcoming drug resistance..Adv Drug Deliv Rev2013;65:1784-802

[11]

Vinogradov S.Cancer stem cells and drug resistance: the potential of nanomedicine..Nanomedicine2012;7:597-615 PMCID:PMC3376090

[12]

Maeda H.The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting..Adv Enzyme Regul2001;41:189-207

[13]

Ali A,Zia M,Phull AR.Synthesis, characterization, applications, and challenges of iron oxide nanoparticles..Nanotechnol Sci Appl2016;9:49-67 PMCID:PMC4998023

[14]

Wang Y,Xu S,Shen Y.pH, redox and photothermal tri-responsive DNA/polyethylenimine conjugated gold nanorods as nanocarriers for specific intracellular co-release of doxorubicin and chemosensitizer pyronaridine to combat multidrug resistant cancer..Nanomed Nanotechnol Biol Med2017;13:1785-95

[15]

Song L,Liu J,Liu Q.DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance..Nanoscale2017;9:7750-4

[16]

Biju V.Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy..Chem Soc Rev2014;43:744-64

[17]

Yang J,Wen L,Zhang MZ.Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery..Nanoscale2014;6:11282-92

[18]

Sun L,Chen Y,Huang P.Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer..Biomaterials2017;133:219-28

[19]

Liu J,Zhang J,Qi C.Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice..Small2017;13:1602567

[20]

Farvadi F,Sobhani Z.Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization..Artif Cells Nanomedicine Biotechnol2017;45:855-63

[21]

Pai CL,Hsu CY,Lai PS.Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells..J Biomed Nanotechnol2016;12:619-29

[22]

Alamoudi K,Croissant JG,Omar H.Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape..Nanomedicine2017;12:1421-33

[23]

Gao M.Xu Y, Qiu L, Sensitization of multidrug-resistant malignant cells by liposomes co-encapsulating doxorubicin and chloroquine through autophagic inhibition..J Liposome Res2017;27:151-60

[24]

El-Say KM.Polymeric nanoparticles: promising platform for drug delivery..Int J Pharm2017;528:675-91

[25]

Huang S,Zhu H,Liu Q.PEGylated doxorubicin micelles loaded with curcumin exerting synergic effects on multidrug resistant tumor cells..J Nanosci Nanotechnol2017;17:2873-80

[26]

Li Y,Zhang X,Zhang Z.Tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance..ACS Nano2017;11:416-29

[27]

Hare JI,Ashford MB,Storm G.Challenges and strategies in anti-cancer nanomedicine development: an industry perspective..Adv Drug Deliv Rev2017;108:25-38

[28]

Allen TM.Ligand-targeted therapeutics in anticancer therapy..Nat Rev Cancer2002;2:750-63

[29]

Bertrand N,Xu X,Farokhzad OC.Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology..Adv Drug Deliv Rev2014;66:2-25 PMCID:PMC4219254

[30]

Cerqueira BBS,Shelling AN.Nanoparticle therapeutics: technologies and methods for overcoming cancer..Eur J Pharm Biopharm2015;97A:140-51

[31]

Mura S,Couvreur P.Stimuli-responsive nanocarriers for drug delivery..Nat Mater2013;12:991-1003

[32]

Torchilin VP.Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery..Nat Rev Drug Discov2014;13:813-27 PMCID:PMC4489143

[33]

Sosnik A.Drug efflux pumps in cancer resistance pathways: from molecular recognition and characterization to possible inhibition strategies in chemotherapy.2019;1st ed.Academic Press394

[34]

Zhang H,Wang X.Reversion of multidrug resistance in tumor by biocompatible nanomaterials..Mini Rev Med Chem2010;10:737-45

[35]

Gobbo OL,Radomski MW,Prina-Mello A.Magnetic nanoparticles in cancer theranostics..Theranostics2015;5:1249-63 PMCID:PMC4568452

[36]

Dadfar SM,Drude NI,Knüchel R.Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications..Adv Drug Deliv Rev2019;138:302-25 PMCID:PMC7115878

[37]

Elumalai R,Maliyakkal N,Kondaiah P.Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers..Nanomed Nanotechnol Biol Med2015;11:969-81

[38]

Kievit FM,Fang C,Wang K.Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro..J Control Release2011;152:76-83 PMCID:PMC3110619

[39]

Ling D,Park SJ,Kim KS.Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors..J Am Chem Soc2014;136:5647-55

[40]

Mokhtari RB,Baluch N,Kumar S.Combination therapy in combating cancer..Oncotarget2017;8:38022-43 PMCID:PMC5514969

[41]

Hu CMJ.Nanoparticle-based combination therapy toward overcoming drug resistance in cancer..Biochem Pharmacol2012;83:1104-11

[42]

Cheng J,Chen BA,Xu W.Effect of magnetic nanoparticles of Fe3O4 and 5 bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells..Int J Nanomedicine2009;2004:209-16 PMCID:PMC2775691

[43]

Cheng J,Chen B,Gao C.Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line..Int J Nanomedicine2012;2012:2843-52 PMCID:PMC3383324

[44]

Hildebrandt B,Ahlers O,Sreenivasa G.The cellular and molecular basis of hyperthermia..Crit Rev Oncol Hematol2002;43:33-56

[45]

Kossatz S,Couleaud P,Aires A.Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery..Breast Cancer Res.2015;17:66 PMCID:PMC4451751

[46]

Ren Y,Chen B,Cai X.Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance..Int J Nanomedicine2012;7:2261-9 PMCID:PMC3356215

[47]

Tian Y,Chen X,Yang W.Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer..Adv Mater2014;26:7393-8

[48]

Lin G,Yang L,Lin B.Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells..Biomaterials2014;35:9495-507

[49]

Wu B,Cole BJ.Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers..Environ Sci Technol2015;49:5760-70

[50]

Chen Y,Wu M,Zhang L.Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer..Adv Mater2014;26:7019-26

[51]

Ock K,Ganbold EO,Park J.Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced raman scattering..Anal Chem2012;84:2172-8

[52]

Cai X,Kim C,Xia Y.In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography..ACS Nano2011;5:9658-67 PMCID:PMC3246549

[53]

Chen YH,Huang PY,Cheng PC.Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model..Mol Pharm2007;4:713-22

[54]

Gu YJ,Man CWY,Cheng SH.Gold-doxorubicin nanoconjugates for overcoming multidrug resistance..Nanomed Nanotechnol Biol Med2012;8:204-11

[55]

Wang F,Dou S,Sun TM.Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells..ACS Nano2011;5:3679-92

[56]

Rajput S,Kumar BNP,Konar S.Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes..Mol Pharm2015;12:4214-25

[57]

Cheng L,Feng L,Liu Z.Functional nanomaterials for phototherapies of cancer..Chem Rev2014;114:10869-939

[58]

Bhana S,Wang L,Mishra SR.Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy..ACS Appl Mater Interfaces2015;7:11637-47

[59]

Lee SM,Kim SY,Kim S.Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer..Biomaterials2014;35:2272-82

[60]

Thambiraj S,Ravi Shankaran D.Functionalized gold nanoparticles for drug delivery applications..Mater Today Proc2018;5:16763-73

[61]

Luo C,Guo L,Liu H.Graphene quantum dots downregulate multiple multidrug-resistant genes via interacting with their C-rich promoters..Adv Healthc Mater2017;6:1700328

[62]

Sun Y,Yin H.MicroRNA-mediated suppression of P-glycoprotein by quantum dots in lung cancer cells..J Appl Toxicol2020;40:525-34

[63]

Yezhelyev MV,O’Regan RM,Gao X.Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging..J Am Chem Soc2008;130:9006-12 PMCID:PMC2621273

[64]

Kairdolf BA,Stokes TH,Young AN.Semiconductor quantum dots for bioimaging and biodiagnostic applications..Annu Rev Anal Chem2013;6:143-62 PMCID:PMC3733675

[65]

Li JM,Zhao MX,Li YQ.Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking..Biomaterials2012;33:2780-90

[66]

Fang M,Liu L.Applications of quantum dots in cancer detection and diagnosis: a review..J Biomed Nanotechnol2017;13:1-16

[67]

Tang F,Chen D.Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery..Adv Mater2012;24:1504-34

[68]

Mamaeva V,Lindén M.Mesoporous silica nanoparticles in medicine-Recent advances..Adv Drug Deliv Rev2013;65:689-702

[69]

He Q.MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition..Adv Mater2014;26:391-411

[70]

Gao Y,Ji X,Yin Q.Cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles..ACS Nano2011;5:9788-98

[71]

Wang X,Wang H,Liu Y.Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system..Int J Clin Exp Pathol2014;7:1337-47 PMCID:PMC4014214

[72]

Jia L,Shen J,Tian X.Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance..Int J Pharm2015;489:318-30

[73]

Liu H,Chi X,Huang D.Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells..Sci Rep2016;6:31009 PMCID:PMC4971527

[74]

Li X,Shi J.Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system..ACS Nano2014;8:1309-20

[75]

Li X,Shi J.Nuclear-targeting MSNs-based drug delivery system: global gene expression analysis on the MDR-overcoming mechanisms..Adv Healthc Mater2015;4:2641-8

[76]

He Q,Zhang L,Gao F.A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance..Biomaterials2011;32:7711-20

[77]

Liu J,Budi Hartono S,Kantharidis P.Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake..Biomaterials2012;33:970-8

[78]

Meng H,Zhang H,Xia T.Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo..ACS Nano2013;7:994-1005 PMCID:PMC3620006

[79]

Han L,Yin C.Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA..Biomaterials2015;60:42-52

[80]

Yang P,Lin J.Functionalized mesoporous silica materials for controlled drug delivery..Chem Soc Rev2012;41:3679-98

[81]

Chen Y,Shi J.Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures..Expert Opin Drug Deliv2014;11:917-30

[82]

Gong H,Liu Z.Carbon nanotubes for biomedical imaging: the recent advances..Adv Drug Deliv Rev2013;65:1951-63

[83]

Kruss S,Zhang J,Mu B.Carbon nanotubes as optical biomedical sensors..Adv Drug Deliv Rev2013;65:1933-50

[84]

Thomsen C.Raman scattering in carbon nanotubes..Top Appl Phys2006;108:115-232

[85]

Saito N,Usui Y,Hara K.Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development..Chem Soc Rev2011;40:3824-34

[86]

Cheng J,Sun YP.Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance..Toxicol Appl Pharmacol2011;250:184-93

[87]

Wu CH,Kim JH,Wanebo HJ.Trojan-horse nanotube on-command intracellular drug delivery..Nano Lett2012;12:5475-80 PMCID:PMC4106035

[88]

Bhirde AA,Srivatsan A,Jin AJ.Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance..ACS Nano2014;8:4177-89 PMCID:PMC4046789

[89]

Kumar M,Misra C,Singh B.N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: a synergistic approach to overcome MDR in cancer cells..Mater Sci Eng C2018;89:274-82

[90]

Wang L,Wang X,Yin JJ.Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance..J Am Chem Soc2015;137:1947-55

[91]

Suo X,Zhang H,Min Y.P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes..ACS Appl Mater Interfaces2018;10:33464-73 PMCID:PMC6200400

[92]

Yang K,Shi X.Nano-graphene in biomedicine: theranostic applications..Chem Soc Rev2013;42:530-47

[93]

Zhi F,Jia X,Lu H.Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in Vitro..PLoS One2013;8:e60034 PMCID:PMC3603917

[94]

Yang HW,Lin KJ,Huang CY.EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy..Biomaterials2013;34:7204-14

[95]

Feng L,Shi X,Liu J.Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance..Adv Healthc Mater2014;3:1261-71

[96]

Tran TH,Pham TT,Choi HG.Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer..ACS Appl Mater Interfaces2015;7:28647-55

[97]

Li Y,Yu Z,Pan W.Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy..ACS Appl Mater Interfaces2018;10:15461-6

[98]

Battigelli A,Da Ros T,Bianco A.Endowing carbon nanotubes with biological and biomedical properties by chemical modifications..Adv Drug Deliv Rev2013;65:1899-920

[99]

Huang Y,Cai T.Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer..Oncol Lett2016;12:11-5 PMCID:PMC4907090

[100]

Sercombe L,Moheimani F,Sood AK.Advances and challenges of liposome assisted drug delivery..Front Pharmacol2015;6:286 PMCID:PMC4664963

[101]

Hua S.The use of lipid-based nanocarriers for targeted pain therapies..Front Pharmacol2013;4:143 PMCID:PMC3836271

[102]

Il Kang D,Gwak HS,Lim SJ.Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells..Drug Deliv2009;16:261-7

[103]

Yang T,Choi MK,Chung SJ.Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation..Int J Pharm2007;338:317-26

[104]

Kapse-Mistry S,Srivastava R.Nanodrug delivery in reversing multidrug resistance in cancer cells..Front Pharmacol2014;5:159 PMCID:PMC4090910

[105]

Meng J,Xu H,Wang C.Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo..Sci Rep2016;6:22390 PMCID:PMC4780086

[106]

Van Helvoort A,Sprong H,Schinkel AH.MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine..Cell1996;87:507-17

[107]

Bosch I,Wu RL,Croop J.Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein..Biochemistry1997;36:5685-94

[108]

Ashley JD,Schroeder VA,Pizzuti VJ.Dual Carfilzomib and Doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma..Mol Cancer Ther2016;15:1452-9

[109]

Tolcher AW.Improving combination cancer therapy: the CombiPlex® development platform..Futur Oncol2018;14:1317-32

[110]

Vaidya B,Dash D,Vyas SP.Development and characterization of highly selective target-sensitive liposomes for the delivery of streptokinase: in vitro/in vivo studies..Drug Deliv2016;23:791-7

[111]

Jiang L,He X,He B.Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response..Biomaterials2015;52:126-39

[112]

Waghmare AS,Gadhave MV,Jadhav SI.Solid lipid nanoparticles: a promising drug delivery system..IRJP2012;3:100-7

[113]

Baek JS.Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles..Int J Pharm2015;478:617-24

[114]

Zhao X,Li Y,Liu W.Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice..Eur J Pharm Biopharm2015;93:27-36

[115]

Aznar ,Blanco-Prieto MJ.Edelfosine lipid nanoparticles overcome multidrug resistance in K-562 leukemia cells by a caspase-independent mechanism..Mol Pharm2014;11:2650-8

[116]

Chen HH,Chiang WH,Shen MY.pH-responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells..Int J Nanomedicine2015;10:5035-48 PMCID:PMC4531030

[117]

Tamjidi F,Varshosaz J.Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules..Innov Food Sci Emerg Technol2013;19:29-43

[118]

Ding X,Zhao Y,Yu Y.Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer..RSC Adv2017;7:35086-95

[119]

Li X,Niu H.Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy..Int J Nanomedicine2018;13:4107-19 PMCID:PMC6047616

[120]

Dong X,Qu H,Zheng J.Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo..Drug Deliv2016;23:1374-8

[121]

Yuan Y,Du W,Zhang J.Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance..Angew Chemie Int Ed2015;54:9700-4

[122]

Wang D,Wang Y,Fu Q.Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer..Mol Pharm2013;10:1465-9 PMCID:PMC3685192

[123]

Shi Q,Liu M,Zhang X.Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells..Biomaterials2015;67:169-82

[124]

Liu Y,Qiao ZY,Liang XJ.A peptide-network weaved nanoplatform with tumor microenvironment responsiveness and deep tissue penetration capability for cancer therapy..Adv Mater2015;27:5034-42

[125]

Peng ZH.Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer..J Am Chem Soc2015;137:6726-9 PMCID:PMC4855854

[126]

Dai Z,Zhu L.MMP2-sensitive PEG-lipid copolymers: a new type of tumor-targeted P-glycoprotein inhibitor..ACS Appl Mater Interfaces2016;8:12661-73

[127]

Zhu B,Yue QC.Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy..Biomed Pharmacother2017;91:287-94

[128]

Yin Q,Zhang Z,Chen L.Multifunctional nanoparticles improve therapeutic effect for breast cancer by simultaneously antagonizing multiple mechanisms of multidrug resistance..Biomacromolecules2013;14:2242-52

[129]

Patel J,Bhatt P,Jain M.Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells..J Microencapsul2018;35:204-17

[130]

Son J,Yi G,Park H.Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo..Biochem Biophys Res Commun2018;498:523-8

[131]

Byeon Y,Choi WS,Kim GH.CD44-targeting PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer..Cancer Res2018;78:6247-56

[132]

Wang Y,He H,Shen Q.Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance..Mol Pharm2014;11:885-94

[133]

Tang X,Feng X,Jin X.Co-delivery of docetaxel and poloxamer 235 by PLGA-TPGS nanoparticles for breast cancer treatment..Mater Sci Eng C2015;49:348-55

[134]

Wang DF,Lu Y,Qi SS.TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells..ACS Appl Mater Interfaces2015;7:3888-901

[135]

Roy A,Undzys E.A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors..Biomaterials2015;52:335-46 PMCID:PMC4379456

[136]

Halley PD,McWilliams EM,Patton RA.Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model..Small2016;12:308-20 PMCID:PMC4879968

[137]

Kataoka K,Nagasaki Y.Block copolymer micelles for drug delivery: design, characterization and biological significance..Adv Drug Deliv Rev2012;64:37-48

[138]

Alakhova DY.Pluronics and MDR reversal: an update..Mol Pharm2014;11:2566-78 PMCID:PMC4122590

[139]

Alakhova DY,Batrakova EV,Li S.Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers..J Control Release2010;142:89-100 PMCID:PMC3113470

[140]

Batrakova EV,Elmquist WF,Alakhov VY.Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: selective energy depletion..Br J Cancer2001;85:1987-97 PMCID:PMC2364003

[141]

Kabanov AV,Alakhov VY.An essential relationship between ATP depletion and chemosensitizing activity of pluronic block copolymers..J Control Release2003;91:75-83 PMCID:PMC3932490

[142]

Wang H,Zhang M,Shen Y.Redox-activatable ATP-depleting micelles with dual modulation characteristics for multidrug-resistant cancer therapy..Adv Healthc Mater2017;6:1601293

[143]

Ma YC,Tao W,Wang YC.Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells..ACS Appl Mater Interfaces2015;7:26315-25

[144]

Guo X,Jing Y.Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy..Adv Mater2015;27:6450-6

[145]

Yu H,Yu P,Feng B.pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer..Adv Funct Mater2015;25:2489-500

[146]

Wang T,Yu H,Liu J.Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor..ACS Nano2016;10:3496-508

[147]

Lee ES,Bae YH.Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor..J Control Release2005;103:405-18

[148]

Mohajer G,Bae YH.Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells..Pharm Res2007;24:1618-27

[149]

Kim D,Park K,Bae YH.Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor..Pharm Res2008;25:2074-82 PMCID:PMC2560094

[150]

Abbasi E,Akbarzadeh A,Nasrabadi HT.Dendrimers: synthesis, applications, and properties..Nanoscale Res Lett2014;9:247 PMCID:PMC4074873

[151]

Lu HL,Nishiyama N,Lai PS.Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo..J Control Release2011;155:458-64

[152]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00046514. [Last accessed on 28 July 2020]

[153]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00499252. [Last accessed on 28 July 2020]

[154]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00466960. [Last accessed on 28 July 2020]

[155]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT01336062. [Last accessed on 28 July 2020]

[156]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT03942068. [Last accessed on 28 July 2020]

[157]

ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT01652079. [Last accessed on 28 July 2020]

[158]

ClinicalTrials.gov, US National Library of Medicine. Available from: [https://clinicaltrials.gov/ct2/show/NCT03742713. [Last accessed on 28 July 2020]

[159]

Rizvi SAA.Applications of nanoparticle systems in drug delivery technology..Saudi Pharm J2018;26:64-70 PMCID:PMC5783816

[160]

Villanueva MT.Therapeutic resistance: paradox breaking..Nat Rev Cancer2015;15:71

[161]

Seaton A.Nanoscience, nanotoxicology, and the need to think small..Lancet2005;365:923-4

[162]

Xia T,Brant J,Sempf J.Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm..Nano Lett2006;6:1794-807

[163]

Vallhov H,Johansson SM,Muhammed MA.The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications..Nano Lett2006;6:1682-6

[164]

Dobrovolskaia MA.Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines..J Control Release2013;172:456-66 PMCID:PMC5831149

[165]

Ehmann F,Duncan R,Pita R.Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines..Nanomedicine (Lond)2013;8:849-56

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/