PDF
Abstract
The poor prognosis of glioblastoma multiforme (GBM) patients is in part due to resistance to current standard-of-care treatments including chemotherapy [predominantly temozolomide (TMZ; Temodar)], radiation therapy and an anti-angiogenic therapy [an antibody against the vascular endothelial growth factor (bevacizumab; Avastin)], resulting in recurrent tumors. Several recurrent GBM tumors are commonly resistant to either TMZ, radiation or bevacizumab, which contributes to the low survival rate for GBM patients. This review will focus on novel targets and therapeutic approaches that are currently being considered to combat GBM chemoresistance. One of these therapeutic options is a small molecule called OKlahoma Nitrone 007 (OKN-007), which was discovered to inhibit the transforming growth factor β1 pathway, reduce TMZ-resistance and enhance TMZ-sensitivity. OKN-007 is currently an investigational new drug in clinical trials for both newly-diagnosed and recurrent GBM patients. Another novel target is ELTD1 (epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1; alternatively known as ADGRL4, Adhesion G protein-coupled receptor L4), which we used a monoclonal antibody against, where a therapy against it was found to inhibit Notch 1 in a pre-clinical GBM xenograft model. Notch 1 is known to be associated with chemoresistance in GBM. Other potential therapeutic targets to combat GBM chemoresistance include the phosphoinositide 3-kinase pathway, nuclear factor-κB, the hepatocyte/scatter factor (c-MET), the epidermal growth factor receptor, and the tumor microenvironment.
Keywords
Glioblastoma
/
pre-clinical models
/
OKlahoma Nitrone 007
/
transforming growth factor-β1
/
ELTD1
/
magnetic resonance imaging
Cite this article
Download citation ▾
Rheal A. Towner, Michelle Zalles, Debra Saunders, Nataliya Smith.
Novel approaches to combat chemoresistance against glioblastomas.
Cancer Drug Resistance, 2020, 3(4): 686-698 DOI:10.20517/cdr.2020.38
| [1] |
Sharifzad F,Verdi J,Mollapour Sisakht M.Glioblastoma cancer stem cell biology: potential theranostic targets..Drug Resist Updat2019;42:35-45
|
| [2] |
Akbari-Birgani S,Zuse A,Cieślar-Pobuda A.Cancer stem cells, cancer-initiating cells and methods for their detection..Drug Discov Today2016;21:836-42
|
| [3] |
Farahani E,Jangamreddy JR,Kawalec M.Cell adhesion molecules and their relation to (cancer) cell stemness..Carcinogenesis2014;35:747-59
|
| [4] |
Hombach-Klonisch S,Shojaei S,Pitz M.Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response..Pharmacol Ther2018;184:13-41
|
| [5] |
Wasik AM,Pantovic A,Asgari HR.Reprogramming and carcinogenesis-parallels and distinctions..Int Rev Cell Mol Biol2014;308:167-203
|
| [6] |
Mazzoleni S,Pala M,Franzin A.Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis..Cancer Res2010;70:7500-13
|
| [7] |
Cohen AL,Colman H.IDH1 and IDH2 mutations in gliomas..Curr Neurol Neurosci Rep2013;13:345 PMCID:PMC4109985
|
| [8] |
Furnari FB,Cavenee WK.Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma..Nat Rev Cancer2015;15:302-10 PMCID:PMC4875778
|
| [9] |
Koschmann C,MacKay A,Wu YM.Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma..Oncotarget2016;7:65696-706 PMCID:PMC5323185
|
| [10] |
Cancer Genome Atlas Research NetworkComprehensive genomic characterization defines human glioblastoma genes and core pathways..Nature2008;455:1061-8 PMCID:PMC2671642
|
| [11] |
de Toledo SM,Dahlberg WK,Little JB.ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation..Oncogene2000;19:6185-93
|
| [12] |
Lathia JD.Overview of cancer stem cells and stemness for community oncologists..Target Oncol2017;12:387-99 PMCID:PMC5524873
|
| [13] |
Noushmehr H,Diefes K,Pujara K.Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma..Cancer Cell2010;17:510-22 PMCID:PMC2872684
|
| [14] |
Gallia GL,Siu IM,James CD.PIK3CA gene mutations in pediatric and adult glioblastoma multiforme..Mol Cancer Res2006;4:709-14
|
| [15] |
Zhao HF,Shao W,Chen ZP.Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development..Mol Cancer2017;16:100 PMCID:PMC5463420
|
| [16] |
Beck S,Sohn YW,Kim SH.Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cell characteristics by inducing EGFR expression..Mol Cells2011;31:9-15 PMCID:PMC3906874
|
| [17] |
Benitez JA,D’antonio M,Camargo MF.PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3..Nat Commun2017;8:15223 PMCID:PMC5437297
|
| [18] |
Zheng H,Yan H,Hiller DJ.p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation..Nature2008;455:1129-33 PMCID:PMC4051433
|
| [19] |
Daniele S,Da Pozzo E,Costa B.Apoptosis therapy in cancer: the first single-molecule co-activating p53 and the translocator protein in glioblastoma..Sci Rep2014;4:4749 PMCID:PMC3996484
|
| [20] |
Kanamori M,Takei H,Uenohara H.Malignant transformation of diffuse astrocytoma to glioblastoma associated with newly developed BRAF V600E mutation..Brain Tumor Pathol2016;33:50-6
|
| [21] |
Parsons DW,Zhang X,Leary RJ.An integrated genomic analysis of human glioblastoma multiforme..Science2008;321:1807-12 PMCID:PMC2820389
|
| [22] |
Verhaak RG,Purdom E,Qi Y.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1..Cancer Cell2010;17:98-110 PMCID:PMC2818769
|
| [23] |
Appin CL.Molecular genetics of gliomas..Cancer J2014;20:66-72
|
| [24] |
Schwartzentruber J,Liu XY,Pfaff E.Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma..Nature2012;482:226-31
|
| [25] |
Cenciarelli C,Felsani A,Sica G.Correction: PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals..Oncotarget2017;8:36931 PMCID:PMC5482709
|
| [26] |
Kaminska B.Barańska J.Recent advances in understanding mechanisms of TGFβ signaling and its role in glioma pathogenesis..Glioma signaling.2020;ChamSpringer International Publishing179-201
|
| [27] |
Brown KA,Moses HL.A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-β signaling..J Cell Biochem2007;101:9-33
|
| [28] |
Budi EH,Derynck R.Transforming growth factor-β receptors and Smads: regulatory complexity and functional versatility..Trends Cell Biol2017;27:658-72
|
| [29] |
Derynck R.Smad-dependent and Smad-independent pathways in TGF-β family signalling..Nature2003;425:577-84
|
| [30] |
Itoh S.Negative regulation of TGF-β receptor/Smad signal transduction..Curr Opin Cell Biol2007;19:176-84
|
| [31] |
Hau P,Schlaier J.TGF-β2 signaling in high-grade gliomas..Curr Pharm Biotechnol2011;12:2150-7
|
| [32] |
Bruna A,Rojo F,Peñuelas S.High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene..Cancer Cell2007;11:147-60
|
| [33] |
Ikushima H,Ino Y,Miyazawa K.Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors..Cell Stem Cell2009;5:504-14
|
| [34] |
Peñuelas S,Prieto-Sánchez RM,Barba I.TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma..Cancer Cell2009;15:315-27
|
| [35] |
Beck C,Rowley DA.Role of TGF-β in immune-evasion of cancer..Microsc Res Tech2001;52:387-95
|
| [36] |
Sánchez-Elsner T,Velasco B,Attisano L.Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression..J Biol Chem2001;276:38527-35
|
| [37] |
Wick W,Weller M.Glioma cell invasion: regulation of metalloproteinase activity by TGF-β..J Neurooncol2001;53:177-85
|
| [38] |
Dietrich LC,Langenkamp E,Zieba A.Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization..J Pathol2012;228:378-90
|
| [39] |
Vogt J,Sapkota GP.The specificities of small molecule inhibitors of the TGFß and BMP pathways..Cell Signal2011;23:1831-42
|
| [40] |
Towner RA,Saunders D,Cai X.OKN-007 increases temozolomide (TMZ) sensitivity and suppresses TMZ-resistant glioblastoma (GBM) tumor growth..Transl Oncol2019;12:320-35 PMCID:PMC6251232
|
| [41] |
Roy LO,Fortin D.Differential expression and clinical significance of transforming growth factor-β isoforms in GBM tumors..Int J Mol Sci2018;19:1113 PMCID:PMC5979513
|
| [42] |
Cao Z.Mechanisms navigating the TGF-β pathway in prostate cancer..Asian J Urol2015;2:11-8 PMCID:PMC5645057
|
| [43] |
Zhu B.Platanias LC.Transforming growth factor β and prostate cancer..Cytokines and cancer.2005;New YorkSpringer-Verlag157-73
|
| [44] |
Conery AR,Thompson EA,Ko TC.Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis..Nat Cell Biol2004;6:366-72
|
| [45] |
Akhurst RJ.TGF-β signaling in cancer - a double-edged sword..Trends in Cell Biology2001;11:S44-51
|
| [46] |
Donkor MK,Savage PA,Johnson LK.T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine..Immunity2011;35:123-34 PMCID:PMC3430371
|
| [47] |
Jones E,Kyprianou N.Targeting TGF-β in prostate cancer: therapeutic possibilities during tumor progression..Expert Opin Ther Targets2009;13:227-34
|
| [48] |
Yoshino A,Yachi K,Fukushima T.Gene expression profiling predicts response to temozolomide in malignant gliomas..Int J Oncol2010;36:1367-77
|
| [49] |
Wang Z,Wang R.SUMOylation regulates TGF-β1/Smad4 signalling in-resistant glioma cells..Anticancer Drugs2017;
|
| [50] |
Fruman DA,Cantley LC.Phosphoinositide kinases..Annu Rev Biochem1998;67:481-507
|
| [51] |
Fresno Vara JA,de Castro J,Belda-Iniesta C.PI3K/Akt signalling pathway and cancer..Cancer Treat Rev2004;30:193-204
|
| [52] |
Hunter T.Signaling - 2000 and Beyond..Cell2000;100:113-27
|
| [53] |
Gagliardi PA,Primo L.PDK1: at the crossroad of cancer signaling pathways..Semin Cancer Biol2018;48:27-35
|
| [54] |
Haas B,Keksel C,Kiefer D.Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs..Cancer Cell Int2018;18:69 PMCID:PMC5935937
|
| [55] |
Wen PY,Reardon DA,Alfred Yung WK.Current clinical development of PI3K pathway inhibitors in glioblastoma..Neuro Oncol2012;14:819-29 PMCID:PMC3379803
|
| [56] |
Hoesel B.The complexity of NF-κB signaling in inflammation and cancer..Mol Cancer2013;12:86 PMCID:PMC3750319
|
| [57] |
Soubannier V.NF-κB signalling in glioblastoma..Biomedicines2017;5:29 PMCID:PMC5489815
|
| [58] |
Xia Y,Verma IM.NF-κB, an active player in human cancers..Cancer Immunol Res2014;2:823-30 PMCID:PMC4155602
|
| [59] |
Bhat KLP,Vaillant B,Hummelink K.Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma..Cancer Cell2013;24:331-46 PMCID:PMC3817560
|
| [60] |
Rinkenbaugh AL,Calamini B,Persson AI.IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance..Oncotarget2016;7:69173-87 PMCID:PMC5342468
|
| [61] |
Yu Z,Wang S,Zhou G.Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression..Cancer Letters2018;428:77-89
|
| [62] |
Cheng F.MET in glioma: signaling pathways and targeted therapies..J Exp Clin Cancer Res2019;38:270 PMCID:PMC6585013
|
| [63] |
Huang M,Ma P,Zhang Z.c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma..J Clin Invest2016;126:1801-14 PMCID:PMC4855929
|
| [64] |
Li J,Lin L,Chen L.Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT)..BMC Neurol2018;18:133 PMCID:PMC6117922
|
| [65] |
Bazzoni R.Role of Notch signaling pathway in glioblastoma pathogenesis..Cancers (Basel)2019;11:292 PMCID:PMC6468848
|
| [66] |
Gersey Z,Bloom L,Thompson JW.Therapeutic Targeting of the Notch Pathway in Glioblastoma Multiforme..World Neurosurg2019;131:252-63.e2
|
| [67] |
Venkatesh V,Thangaraj GS,Gnanasekaran A.Targeting Notch signalling pathway of cancer stem cells..Stem Cell Investig2018;5:5 PMCID:PMC5897708
|
| [68] |
Shih AH.Notch signaling enhances nestin expression in gliomas..Neoplasia2006;8:1072-82 PMCID:PMC1790729
|
| [69] |
Hovinga KE,Wang R,Van Der Heijden M.Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate..Stem Cells2010;28:1019-29 PMCID:PMC5532884
|
| [70] |
Li WB,Dong LJ,Chen LX.MicroRNA-34a targets Notch1 and inhibits cell proliferation in glioblastoma multiforme..Cancer Biol Ther2011;12:477-83
|
| [71] |
Hai L,Li T,Liu B.Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway..Cell Death Dis2018;9:158 PMCID:PMC5833555
|
| [72] |
Floyd DH,Seleverstov O,Dominguez C.Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch..Neuro Oncol2012;14:1215-26 PMCID:PMC3452340
|
| [73] |
Hellström M,Gerhardt H.VEGF and Notch signaling: the yin and yang of angiogenic sprouting..Cell Adh Migr2007;1:133-6 PMCID:PMC2634014
|
| [74] |
Zalles M,Ziegler J,Remerowski S.Optimized monoclonal antibody treatment against ELTD1 for GBM in a G55 xenograft mouse model..J Cell Mol Med2020;24:1738-49 PMCID:PMC6991683
|
| [75] |
Masiero M,Han HD,Peterkin T.A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis..Cancer Cell2013;24:229-41 PMCID:PMC3743050
|
| [76] |
Zalles M,Saunders D,Thomas L.Assessment of an scFv antibody fragment against ELTD1 in a G55 glioblastoma xenograft model..Transl Oncol2020;13:100737 PMCID:PMC7090355
|
| [77] |
Favara DM,Haider S,Sheldon H.ADGRL4/ELTD1 silencing in endothelial cells induces ACLY and SLC25A1 and alters the cellular metabolic profile..Metabolites2019;9:287 PMCID:PMC6950702
|
| [78] |
Brennan CW,McKenna A,Noushmehr H.The somatic genomic landscape of glioblastoma..Cell2013;155:462-77 PMCID:PMC3910500
|
| [79] |
Libermann TA,Razon N,Lax I.Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin..Nature1985;313:144-7
|
| [80] |
Fan QW,Gustafson WC,Zipper P.EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma..Cancer Cell2013;24:438-49 PMCID:PMC3819146
|
| [81] |
Klingler S,Yao J,Zhang L.Development of resistance to EGFR-targeted therapy in malignant gliomacan occur through EGFR-dependent and -independent mechanisms..Cancer Res2015;75:2109-19 PMCID:PMC4433602
|
| [82] |
Mellinghoff IK,Vivanco I,Zhu S.Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors..N Engl J Med2005;353:2012-24
|
| [83] |
Reardon DA,Vredenburgh JJ,Friedman AH.Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma..Clin Cancer Res2006;12:860-8
|
| [84] |
Kreisl TN,Mischel PS,Scher HI.A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM)..J Neurooncol2009;92:99-105
|
| [85] |
Hambardzumyan D,Kettenmann H.The role of microglia and macrophages in glioma maintenance and progression..Nat Neurosci2016;19:20-7 PMCID:PMC4876023
|
| [86] |
Schiffer D,Casalone C,Mellai M.Glioblastoma: microenvironment and niche concept..Cancers (Basel)2018;11:5 PMCID:PMC6357107
|
| [87] |
Parsa AT,Panner A,Parney IF.Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma..Nat Med2007;13:84-8
|
| [88] |
Zhao W,Kirkwood KL.p38alpha stabilizes interleukin-6 mRNA via multiple AU-rich elements..J Biol Chem2008;283:1778-85 PMCID:PMC2806577
|
| [89] |
David CJ.Contextual determinants of TGFβ action in development, immunity and cancer..Nat Rev Mol Cell Biol2018;19:419-35
|
| [90] |
Spranger S,Gajewski TF.Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity..Nature2015;523:231-5
|
| [91] |
Tomaszewski W,Gajewski TF.Brain tumor microenvironment and host state: implications for immunotherapy..Clin Cancer Res2019;25:4202-10 PMCID:PMC6635001
|
| [92] |
Zhang X,Wang J,Zhao P.Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions..Biomed Pharmacother2019;109:39-46
|
| [93] |
Guan X,Maniar S,Sun D.Reactive astrocytes in glioblastoma multiforme..Mol Neurobiol2018;55:6927-38
|
| [94] |
D’Alessio A,Sica G.Pathological and molecular features of glioblastoma and its peritumoral tissue..Cancers (Basel)2019;11:469 PMCID:PMC6521241
|
| [95] |
Placone AL,Searson PC.The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment..Tumour Biol2016;37:61-9
|
| [96] |
Munoz JL,Greco SJ,Ligon KL.Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43..Cell Death Dis2014;5:e1145 PMCID:PMC3973225
|
| [97] |
Da Ros M,Iorio AL,Guidi M.Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier..Int J Mol Sci2018;19:2879 PMCID:PMC6213072
|
| [98] |
Barbero S,Bonavia R,Piccioli P.Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro..Ann N Y Acad Sci2002;973:60-9
|
| [99] |
Sin WC,Bechberger JF,Chen H.Astrocytes promote glioma invasion via the gap junction protein connexin43..Oncogene2016;35:1504-16
|
| [100] |
Fioretti B,Micheli MR,Sciaccaluga M.Expression and modulation of the intermediate- conductance Ca2+-activated K+ channel in glioblastoma GL-15 cells..Cell Physiol Biochem2006;18:47-56
|
| [101] |
Sciaccaluga M,Catacuzzeno L,Bertollini C.CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity..Am J Physiol Cell Physiol2010;299:C175-84
|
| [102] |
Stegen B,Klumpp L,Dittmann K.Ca2+-Activated IK K+ channel blockade radiosensitizes glioblastoma cells..Mol Cancer Res2015;13:1283-95
|
| [103] |
Morrone FB,Nicoletti NF.Calcium channels and associated receptors in malignant brain tumor therapy..Mol Pharmacol2016;90:403-9
|
| [104] |
Costanza B,Bellier J,Turtoi A.Stromal modulators of TGF-β in cancer..J Clin Med2017;6:7 PMCID:PMC5294960
|
| [105] |
Coutinho de Souza P,Atolagbe O,Njoku C.OKN-007 decreases free radical levels in a preclinical F98 rat glioma model..Free Radic Biol Med2015;87:157-68 PMCID:PMC6208328
|