Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance

Siwei Chu , Ursula Stochaj

Cancer Drug Resistance ›› 2020, Vol. 3 ›› Issue (3) : 302 -333.

PDF
Cancer Drug Resistance ›› 2020, Vol. 3 ›› Issue (3) :302 -333. DOI: 10.20517/cdr.2020.20
Review
Review

Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance

Author information +
History +
PDF

Abstract

One of the major obstacles of successful cancer therapy is cancer drug resistance. The unique tools and applications developed by nanomedicine provide new approaches to surmount this common limitation of current treatment regimens. Nanocarriers that absorb light in the near-infrared spectrum are particularly suitable for this purpose. These nanocarriers can produce heat, release drugs or stimulate the production of physiologically relevant compounds when illuminated with near-infrared light. The current review summarizes the causes contributing to cancer multidrug resistance. The major types of nanocarriers that have been developed in recent years to overcome these hurdles are described. We focus on nanoparticles that are responsive to near-infrared light and suitable to surmount cancer multidrug resistance. Our review concludes with the bottlenecks that currently restrict the use of nanocarriers in the clinic and an outlook on future directions.

Keywords

Cancer drug resistance / chemotherapy / nanomedicine / near-infrared light / combination therapy / photothermal therapy / photodynamic therapy / controlled drug release

Cite this article

Download citation ▾
Siwei Chu, Ursula Stochaj. Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance. Cancer Drug Resistance, 2020, 3(3): 302-333 DOI:10.20517/cdr.2020.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gotwals P,Cipolletta D,Crystal A.Prospects for combining targeted and conventional cancer therapy with immunotherapy..Nat Rev Cancer2017;17:286-301

[2]

Konieczkowski DJ,Garraway LA.A convergence-based framework for cancer drug resistance..Cancer Cell2018;33:801-15 PMCID:PMC5957297

[3]

Kathawala RJ,Ashby CR Jr.The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade..Drug Resist Updat2015;18:1-17

[4]

Holohan C,Longley DB.Cancer drug resistance: an evolving paradigm..Nat Rev Cancer2013;13:714-26

[5]

Gray R,Braybrooke J,Peto R.Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials..The Lancet2019;393:1440-52 PMCID:PMC6451189

[6]

Smorodinsky-Atias K,Engelberg D.Mutations that confer drug-resistance, oncogenicity and intrinsic activity on the ERK MAP kinases—current state of the art..Cells2020;9:E129 PMCID:PMC7016714

[7]

Bell CC.Principles and mechanisms of non-genetic resistance in cancer..Br J Cancer2019;122:465-72 PMCID:PMC7028722

[8]

Sridharan S,Tilley AMC,Tiwari AK.Novel and alternative targets against breast cancer stemness to combat chemoresistance..Front Oncol2019;9:10031-19 PMCID:PMC6805781

[9]

Vasan N,Hyman DM.A view on drug resistance in cancer..Nature2019;575:299-309

[10]

Eramo A,Zeuner A,Lotti F.Chemotherapy resistance of glioblastoma stem cells..Cell Death Differ2006;13:1238-41

[11]

Begicevic RR.ABC Transporters in cancer stem cells: beyond chemoresistance..Int J Mol Sci2017;18:E2362 PMCID:PMC5713331

[12]

Holohan C,Longley DB.Cancer drug resistance: an evolving paradigm..Nature Reviews Cancer2013;13:714-26

[13]

Heryanto YD,Taketomi-Takahashi A.In vivo molecular imaging of cancer stem cells..Am J Nucl Med Mol Imaging2015;5:14-26 PMCID:PMC4299772

[14]

Gao J,Guo Y.Nanomedicine against multidrug resistance in cancer treatment..Nanomedicine2012;7:465-8

[15]

Steinbichler TB,Skvortsov S,Riechelmann H.Therapy resistance mediated by cancer stem cells..Semin Cancer Biol2018;53:156-67

[16]

Assaraf YG,Gonçalves AC,Linē A.The multi-factorial nature of clinical multidrug resistance in cancer..Drug Resistance Updates2019;46:100645

[17]

Amawi H,Tiwari AK,Shukla S.ABC transporter-mediated multidrug-resistant cancer..Adv Exp Med Biol2019;1141:549-80

[18]

Robey RW,Hall MD,Bates SE.Revisiting the role of ABC transporters in multidrug-resistant cancer..Nature Reviews Cancer2018;18:452-64 PMCID:PMC6622180

[19]

Shukla S,Ambudkar SV.Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance..Drug Resist Updat2012;15:70-80 PMCID:PMC3348341

[20]

Chen Z,Zhang L,Deng M.Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade..Cancer Lett2016;370:153-64

[21]

Liu X.Pan G.ABC family transporters..Drug Transporters in Drug Disposition, Effects and Toxicity.2019;SingaporeSpringer Singapore13-100

[22]

Sharom FJ.The P-glycoprotein multidrug transporter..Essays Biochem2011;50:161-78

[23]

Bloise E.Chapter 19 - multidrug resistance P-Glycoprotein (P-gp), glucocorticoids, and the stress response.2019;Stress SeriesElsevier227-41

[24]

Stouch TR.Progress in understanding the structure-activity relationships of P-glycoprotein..Adv Drug Del Rev2002;54:315-28

[25]

Elmeliegy M,Guo C.Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: review of clinical drug-drug interaction studies..Clin Pharmacokinet2020; PMCID:PMC7292822

[26]

Yakusheva EN.Structure and function of multidrug resistance protein 1..Biochemistry (Mosc)2018;83:907-29

[27]

Crawford RR,Schuetz EG.Beyond competitive inhibition: regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions..Drug Metab Dispos2018;46:567-80 PMCID:PMC5896366

[28]

Tolios A,Hovig E,Scorilas A.Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions..Drug Resist Updat2020;48:100662

[29]

Dallavalle S,Lazzarato L,Machuqueiro M.Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors..Drug Resist Updat2020;50:100682

[30]

Cui Q,Assaraf YG,Gupta P.Modulating ROS to overcome multidrug resistance in cancer..Drug Resist Updat2018;41:1-25

[31]

Lee SM,Kim SY,Kim S.Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer..Biomaterials2014;35:2272-82

[32]

Calderwood SK.Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands?.Philos Trans R Soc Lond B Biol Sci2018;373:20160524 PMCID:PMC5717524

[33]

PubChem. Doxorubicin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin. [Last accessed on 26 May 2020]

[34]

Wijdeven RH,Assaraf YG.Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics..Drug Resist Updat2016;28:65-81

[35]

Capeloa T,Zampieri LX,Sonveaux P.Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines..Semin Cell Dev Biol2020;98:181-91

[36]

PubChem. Cisplatin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/trans-Dichlorodiamineplatinum_II. [Last accessed on 26 May 2020]

[37]

Amable L.Cisplatin resistance and opportunities for precision medicine..Pharmacol Res2016;106:27-36

[38]

Morris PG.Microtubule active agents: beyond the taxane frontier..Clin Cancer Res2008;14:7167-72

[39]

NIHDocetaxel. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.2012;Bethesda (MD)National Institute of Diabetes and Digestive and Kidney Diseases

[40]

PubChem. Docetaxel. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Docetaxel. [Last accessed on 26 May 2020]

[41]

Farha NG.Docetaxel. StatPearls.2020;Treasure Island (FL)StatPearls Publishing LLC.

[42]

Lee S,Ho JN,Byun SS.Analysis of resistance-associated gene expression in docetaxel-resistant prostate cancer cells..Oncol Lett2017;14:3011-8 PMCID:PMC5588173

[43]

Shen DW,Hall MD.Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes..Pharmacol Rev2012;64:706-21 PMCID:PMC3400836

[44]

Manohar S.Cisplatin nephrotoxicity: a review of the literature..J Nephrol2018;31:15-25

[45]

Ciarimboli G.Membrane transporters as mediators of cisplatin side-effects..Anticancer Res2014;34:547-50

[46]

NIH. Precision medicine in cancer treatment. Available from: https://www.cancer.gov/about-cancer/treatment/types/precision-medicine. [Last accessed on 26 May 2020]

[47]

Chatterjee N.Polytherapy and targeted cancer drug resistance..Trends Cancer2019;5:170-82 PMCID:PMC6446041

[48]

Sabnis AJ.Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology..Trends Mol Med2019;25:185-97 PMCID:PMC6401263

[49]

Sarmento-Ribeiro AB,Gonçalves AC,Trougakos IP.The emergence of drug resistance to targeted cancer therapies: clinical evidence..Drug Resistance Updates2019;47:100646

[50]

Whirl-Carrillo M,Hebert JM,Sangkuhl K.Pharmacogenomics knowledge for personalized medicine..Clin Pharmacol Ther2012;92:414-7 PMCID:PMC3660037

[51]

Shi J,Wooster R.Cancer nanomedicine: progress, challenges and opportunities..Nat Rev Cancer2017;17:20-37 PMCID:PMC5575742

[52]

Su H,Gu Y,Zhao J.Potential applications and human biosafety of nanomaterials used in nanomedicine..J Appl Toxicol2018;38:3-24 PMCID:PMC6506719

[53]

Stepensky D.Prediction of drug disposition on the basis of its chemical structure..Clin Pharmacokinet2013;52:415-31

[54]

Gulati NM,Steinmetz NF.Bioinspired shielding strategies for nanoparticle drug delivery applications..Mol Pharm2018;15:2900-9 PMCID:PMC6223124

[55]

Rejman J,Zuhorn IS.Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis..Biochem J2004;377:159-69 PMCID:PMC1223843

[56]

Morales-Cruz M,Castillo B,Molina AM.Smart Targeting to improve cancer therapeutics..Drug Des Devel Ther2019;13:3753-72 PMCID:PMC6826196

[57]

Bjornmalm M,Michael M,Caruso F.Bridging Bio-Nano Science and Cancer Nanomedicine..ACS Nano2017;11:9594-613

[58]

Thomas OS.Overcoming physiological barriers to nanoparticle delivery—are we there yet?.Frontiers in Bioengineering and Biotechnology2019;7:415

[59]

Sindhwani S,Ngai J,Maiorino L.The entry of nanoparticles into solid tumours..Nat Mater2020;

[60]

Bazak R,El Achy S,Refaat T.Cancer active targeting by nanoparticles: a comprehensive review of literature..J Cancer Res Clin Oncol2015;141:769-84 PMCID:PMC4710367

[61]

Roma-Rodrigues C,Raposo L,Fernandes AR.Nanotheranostics targeting the tumor microenvironment..Front Bioeng Biotechnol2019;7:197 PMCID:PMC6703081

[62]

ClinicalTrials.gov. A Study of CriPec® Docetaxel Given to Patients With Solid Tumours (NAPOLY). Available from: https://clinicaltrials.gov/ct2/show/NCT02442531. [Last accessed on 26 May 2020]

[63]

Atrafi F,van Hylckama Vlieg MAM,de Bruijn P.Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors..Clin Cancer Res2020;

[64]

Zhang M,Li C.Charge-reversal nanocarriers: an emerging paradigm for smart cancer nanomedicine..J Control Release2019;319:46-62

[65]

Xu J,Yang D,He F.Tumor self-responsive upconversion nanomedicines for theranostic applications..Nanoscale2019;11:17535-56

[66]

De Santis MC,Martini M.Signaling pathways regulating redox balance in cancer metabolism..Front Oncol2018;8:126 PMCID:PMC5925761

[67]

Llopis J,Miyawaki A,Tsien RY.Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins..Proc Natl Acad Sci U S A1998;95:6803-8 PMCID:PMC22642

[68]

Benham AM.Endoplasmic reticulum redox pathways: in sickness and in health..FEBS J2019;286:311-21

[69]

Jose J,Harilal S,Parambi DGT.Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool..Environ Sci Pollut Res Int2019;

[70]

Chandrasekharan P,Hensley D,Fung BK.Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications..Theranostics2020;10:2965-81 PMCID:PMC7053197

[71]

Wang H,Liang Y,Zhao G.Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform..Biomaterials2018;180:265-78 PMCID:PMC6174693

[72]

Hou Y,Rao W.Nanoparticle-mediated cryosurgery for tumor therapy..Nanomedicine2018;14:493-506

[73]

Papa AL,Kanapathipillai M,Mammoto T.Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery..Biomaterials2017;139:187-94

[74]

Karimi M,Sahandi Zangabad P.Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems..Chem Soc Rev2016;45:1457-501 PMCID:PMC4775468

[75]

Ai X,Xing B.Recent advances of light-mediated theranostics..Theranostics2016;6:2439-57 PMCID:PMC5118606

[76]

Kobayashi H,Alford R,Urano Y.New strategies for fluorescent probe design in medical diagnostic imaging..Chem Rev2009;110:2620-40 PMCID:PMC3241938

[77]

Sinha RP.UV-induced DNA damage and repair: a review..Photochem Photobiol Sci2002;1:225-36

[78]

Kochevar IE.UV-induced protein alterations and lipid oxidation in erythrocyte membranes..Photochem photobiol1990;52:795-800

[79]

Ash C,Donne K.Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods..Lasers Med Sci2017;32:1909-18 PMCID:PMC5653719

[80]

He S,Qu J.Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics..Chem Soc Rev2018;47:4258-78

[81]

Zhao J,Zhou S.NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy..J Mater Chem B2018;6:349-65

[82]

Henderson TA.Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?.Neuropsychiatr Dis Treat2015;11:2191-208 PMCID:PMC4552256

[83]

Liu B,Cheng Z,Huang S.Functional nanomaterials for near-infrared-triggered cancer therapy..Biomater Sci2016;4:890-909

[84]

Khan I,Arany P.Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress..Sci Rep2015;5:10581 PMCID:PMC4450753

[85]

Chu KF.Thermal ablation of tumours: biological mechanisms and advances in therapy..Nat Rev Cancer2014;14:199-208

[86]

Nikfarjam M,Christophi C.Mechanisms of focal heat destruction of liver tumors..J Surg Res2005;127:208-23

[87]

Doughty ACV,Layton E,Howard EW.Nanomaterial applications in photothermal therapy for cancer..Materials (Basel, Switzerland)2019;12:779 PMCID:PMC6427777

[88]

Wang L,Wang J,Ji Y.Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser..Adv Funct Mater2014;24:4229-39

[89]

Ashikbayeva Z,Balmassov D,Saccomandi P.Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer..Nanomaterials (Basel)2019;9:E1195 PMCID:PMC6780818

[90]

Svaasand LO,Morinelli E.On the physical rationale of laser induced hyperthermia..Lasers Med Sci1990;5:121-8

[91]

Jung HS,Sharma A,Sessler JL.Organic molecule-based photothermal agents: an expanding photothermal therapy universe..Chem Soc Rev2018;47:2280-97 PMCID:PMC5882556

[92]

Samadi A,Jauffred L,Bendix PM.Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering..Nanoscale2018;10:9097-107

[93]

Dolmans DE,Jain RK.Photodynamic therapy for cancer..Nat Rev Cancer2003;3:380-7

[94]

Agostinis P,Cengel KA,Girotti AW.Photodynamic therapy of cancer: an update..CA Cancer J Clin2011;61:250-81 PMCID:PMC3209659

[95]

Sorrin AJ,Ferlic NA,Polacheck WJ.Photodynamic therapy and the biophysics of the tumor microenvironment..Photochem Photobiol2020;96:232-59 PMCID:PMC7138751

[96]

Spring BQ,Xu N.The role of photodynamic therapy in overcoming cancer drug resistance..Photochem Photobiol Sci2015;14:1476-91 PMCID:PMC4520758

[97]

Russell LM,Grodzinski P.Nanomaterials innovation as an enabler for effective cancer interventions..Biomaterials2020;242:119926

[98]

Aldieri E,Riganti C,Bosia A.Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation..Toxicol Appl Pharmacol2002;185:85-90

[99]

Riganti C,Viarisio D,Pescarmona G.Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux..Cancer Res2005;65:516-25

[100]

Delou JMA,Souza LCM.Highlights in resistance mechanism pathways for combination therapy..Cells2019;8:1013 PMCID:PMC6770082

[101]

Hu CMJ,Zhang L.Nanoparticle-assisted combination therapies for effective cancer treatment..Ther Deliv2010;1:323-34

[102]

Jiang Y,Fang J,Lin Z.A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer..Mater Sci Eng C Mater Biol Appl2020;107:110224

[103]

Dong J,Zhang WD,Yehuda AG.Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update..Drug Resist Updat2020;49:100681

[104]

Hu CM.Nanoparticle-based combination therapy toward overcoming drug resistance in cancer..Biochem Pharmacol2012;83:1104-11

[105]

Zhang M,Cui Y.Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer..Cancer Biol Med2017;14:212-27 PMCID:PMC5570599

[106]

Luo D,Miranda D.Chemophototherapy: an emerging treatment option for solid tumors..Adv Sci (Weinh)2017;4:1600106 PMCID:PMC5238751

[107]

Sagar V.Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders..Expert Opin Drug Deliv2018;15:137-52 PMCID:PMC5738278

[108]

Goodman AM,Nørregaard K,Choi MR.Near-infrared remotely triggered drug-release strategies for cancer treatment..Proc Natl Acad Sci U S A2017;114:12419-24 PMCID:PMC5703316

[109]

Ke W,Wang J,Guo C.MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research..Med Oncol.2011;28 Suppl 1:S135-41

[110]

Leroy B,Hollestelle A,Gazdar AF.Analysis of TP53 mutation status in human cancer cell lines: a reassessment..Hum Mutat2014;35:756-65 PMCID:PMC4451114

[111]

Chen S,Qiu WX,Zheng DW.Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy..Biomaterials2017;117:92-104

[112]

Zhang Z,Wang Y,Li F.Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells..J Colloid Interface Sci2018;509:47-57

[113]

Kang S,Chae A,Jang H.Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells..Nanoscale2019;11:15173-83

[114]

Zhang Y,Zhang L,Jin P.Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer..Nat Commun2018;9:4236 PMCID:PMC6185906

[115]

Zeng L,Tian Y,Ren W.Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers..Biomaterials2015;57:93-106

[116]

Jiao X,Wang F.Dual stimuli-responsive controlled release nanocarrier for multidrug resistance cancer therapy..Chemphyschem2019;20:3271-5

[117]

Dong X,Zhang X,He X.Intelligent MoS2 nanotheranostic for targeted and Enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging..ACS Appl Mater Interfaces2018;10:4271-84

[118]

Guo R,Wang Y.Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer..Adv Funct Mater2017;27:1606398

[119]

Feng L,Shi X,Liu J.Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance..Adv Healthc Mater2014;3:1261-71

[120]

Zeng X,Liu G,Tao W.Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments..Adv Sci (Weinh)2018;5:1800510 PMCID:PMC6193171

[121]

Wu F,Chu X,Su Y.Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy..Chem Eng J2019;370:387-99

[122]

Li H,Zeng YP,Huang JW.Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer..ACS Appl Mater Interfaces2016;8:31510-23

[123]

Yao C,Li X,Hou J.Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance..Adv Mater2016;28:9341-8

[124]

Wang L,Wang X,Yin JJ.Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance..J Am Chem Soc2015;137:1947-55

[125]

Pai CL,Hsu CY,Lai PS.Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells..J Biomed Nanotechnol2016;12:619-29

[126]

Kalluru P,Chiang CS.Unprecedented “All-in-One” lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of nir light triggered chemo-photodynamic therapy of tumors..Adv Funct Mater2016;26:7908-20

[127]

Ding Y,Qian J.NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer..Nano Lett2019;19:4362-70

[128]

Wei G,Wei B,Zhou S.Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer..Acta Biomater2019;100:365-77

[129]

Peng Y,Cheng W,Zhu D.A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance..Biomater Sci2018;6:1084-98

[130]

Lai GM,Mickley LA,Bates SE.P-glycoprotein expression and schedule dependence of adriamycin cytotoxicity in human colon carcinoma cell lines..Int J Cancer1991;49:696-703

[131]

Ai F,Xu Z,Kong W.An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance..Dalton Trans2016;45:13052-60

[132]

Zhang J,Hu K,Chen S.Surface coordination of black phosphorus with modified cisplatin..Bioconjug Chem2019;30:1658-64

[133]

Tran TH,Pham TT,Choi HG.Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer..ACS Appl Mater Interfaces2015;7:28647-55

[134]

Balaji SA,Chamallamudi MR,Rangarajan A.Role of the drug transporter ABCC3 in breast cancer chemoresistance..PLoS One2016;11:e0155013 PMCID:PMC4865144

[135]

Roll JD,Jones WD.DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines..Mol Cancer2008;7:1-15 PMCID:PMC2246151

[136]

Poulose AC,Mohamed MS,Mitcham T.Multifunctional Cu2-xTe nanocubes mediated combination therapy for multi-drug resistant MDA MB 453..Sci Rep2016;6:35961 PMCID:PMC5075932

[137]

Singh G,Guan H,Chan AM.Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line..BMC Cancer2011;11:490 PMCID:PMC3247870

[138]

Li R,Zhao L,Yang L.P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells..ACS Nano2010;4:1399-408

[139]

Hu M,Deng C,Jia Y.Enhanced invasiveness in multidrug resistant leukemic cells is associated with overexpression of P-glycoprotein and cellular inhibitor of apoptosis protein..Leuk Lymphoma2011;52:1302-11

[140]

Mattheolabakis G,Singh A.Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine..J Drug Target2015;23:605-18

[141]

Zhong Y,Cheng R,Meng F.Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts..J Control Release2015;205:144-54

[142]

Chanmee T,Itano N.Hyaluronan: a modulator of the tumor microenvironment..Cancer Lett2016;375:20-30

[143]

PubChem. Folic acid. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Folic-acid. [Last accessed on 26 May 2020]

[144]

Jahangirian H,Izadiyan Z,Shameli K.A review of small molecules and drug delivery applications using gold and iron nanoparticles..Int J Nanomedicine2019;14:1633-57 PMCID:PMC6417854

[145]

Choudhury H,Chin PX,Cheah JY.Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends..Drug Deliv Transl Res2018;8:1545-63

[146]

PubChem. Quercetin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin. [Last accessed on 26 May 2020]

[147]

PubChem. 3-Methyladenine. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3-Methyladenine. [Last accessed on 26 May 2020]

[148]

PubChem. Chloroquine. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chloroquine. [Last accessed on 26 May 2020]

[149]

PubChem. Tocophersolan. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tocophersolan. [Last accessed on 26 May 2020]

[150]

PubChem. 1-Tetradecanol. National Center for Biotechnology Information, USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1-Tetradecanol. [Last accessed on 26 May 2020]

[151]

PubChem. Irinotecan. National Center for Biotechnology Information, USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Irinotecan. [Last accessed on 26 May 2020]

[152]

Reyhanoglu G.Irinotecan. StatPearls.2020;Treasure Island (FL)StatPearls Publishing LLC.

[153]

Huang J,Jiang L,Qiu J.Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism..Int J Pharm2008;356:351-3

[154]

PubChem. Poloxamer 188. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Poloxamer-188. [Last accessed on 26 May 2020]

[155]

Suk JS,Kim N,Ensign LM.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery..Adv Drug Deliv Rev2016;99:28-51 PMCID:PMC4798869

[156]

Willers C,Rossouw MJ,Hamman JH.Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux..J Cancer Res Clin Oncol2019;145:1949-76

[157]

Li J,Gao Y,Chen Z.Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency..J Mater Chem B2020;8:546-57

[158]

Langhans SA.Three-dimensional in vitro cell culture models in drug discovery and drug repositioning..Front Pharmacol2018;9:6 PMCID:PMC5787088

[159]

Costa EC,de Melo-Diogo D,Carvalho MP.3D tumor spheroids: an overview on the tools and techniques used for their analysis..Biotechnol Adv2016;34:1427-41

[160]

Nunes AS,Costa EC,Correia IJ.3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs..Biotechnol Bioeng2019;116:206-26

[161]

Lu H.Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles..Small2018;14:e1702858

[162]

Walker JV.DNA topoisomerase II as a target for cancer chemotherapy..Cancer Invest2002;20:570-89

[163]

Tang S,Zheng N.Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy..Small2014;10:3139-44

[164]

Xiao JW,Wang F,Zheng XY.Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells..Nanoscale2014;6:4345-51

[165]

Jalani G,Vetrone F.Seeing, targeting and delivering with upconverting nanoparticles..J Am Chem Soc2018;140:10923-31

[166]

Hessel CM,Rasch M,Koo B.Copper selenide nanocrystals for photothermal therapy..Nano Lett2011;11:2560-6 PMCID:PMC3111000

[167]

Li W,Rivera Gil P,Ibanez M.CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents..J Am Chem Soc2013;135:7098-101

[168]

Wang S,Li H,Liu H.Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects..ACS Nano2015;9:1788-800

[169]

Chen X,Wu T,Luo W.Nanostructured binary copper chalcogenides: synthesis strategies and common applications..Nanoscale2018;10:15130-63

[170]

Tian Q,Sun Y,Chen Z.Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells..Adv Mater2011;23:3542-7

[171]

Wu F,Lu H,Huang Y.Triple stimuli-responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer..ACS Appl Mater Interfaces2018;10:21939-49

[172]

Jain PK,El-Sayed IH.Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems..Plasmonics2007;2:107-18

[173]

Vines JB,Ryu NE,Park H.Gold nanoparticles for photothermal cancer therapy..Front Chem2019;7:167 PMCID:PMC6460051

[174]

Agrawal A,Milliron DJ.Control of localized surface plasmon resonances in metal oxide nanocrystals..Annu Rev Mater Res2017;47:1-31

[175]

Kohout C,Polito L.Anisotropic gold nanoparticles in biomedical applications..Int J Mol Sci2018;19:3385 PMCID:PMC6274885

[176]

Kodiha M,Hutter E,Stochaj U.Off to the organelles - killing cancer cells with targeted gold nanoparticles..Theranostics2015;5:357-70 PMCID:PMC4329500

[177]

Venditti I.Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications..Bioengineering (Basel)2019;6:53 PMCID:PMC6630817

[178]

Chauhan VP,Chen O,Fukumura D.Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration..Angew Chem Int Ed Engl2011;50:11417-20 PMCID:PMC3260125

[179]

Samhadaneh DM,Maysinger D.How could gold nanourchins be applied in the clinic?.Nanomedicine2019;15:829-32

[180]

Kodiha M,Boridy S,Maysinger D.Gold nanoparticles induce nuclear damage in breast cancer cells which is further amplified by hyperthermia..CMLS2014;71:4259-73

[181]

Karimi M,Mehdizadeh F,Ghasemi A.Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger..Nanoscale2017;9:1356-92 PMCID:PMC5300024

[182]

Knowlton AA.NFkappaB, heat shock proteins, HSF-1, and inflammation..Cardiovasc Res2006;69:7-8

[183]

Atashrazm F,Woods GM,Dickinson JL.Fucoidan and cancer: a multifunctional molecule with anti-tumor potential..Mar Drugs2015;13:2327-46 PMCID:PMC4413214

[184]

Pons-Tostivint E,Guillermet-Guibert J.Targeting PI3K Signaling in Combination Cancer Therapy..Trends Cancer2017;3:454-69

[185]

Bhat P,Shubha Priya B,Shivananju NS.Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization..Biochem Pharmacol2018;147:170-82

[186]

Tessitore G,Sabri T.Intrinsic time-tunable emissions in core-shell upconverting nanoparticle systems..Angew Chem Int Ed Engl2019;58:9742-51

[187]

Oliveira H,Falk A,Lisjak D.Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the European Upconversion Network (COST Action CM1403)..Adv Healthc Mater2019;8:e1801233

[188]

Hu XY,Cao Y,Qin S.Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery..Chemistry (Easton)2015;21:1208-20

[189]

Comin A.New materials for tunable plasmonic colloidal nanocrystals..Chem Soc Rev2014;43:3957-75

[190]

Liu K,Liu J,Zhao Z.Copper chalcogenide materials as photothermal agents for cancer treatment..Nanoscale2020;12:2902-13

[191]

Tan C.Two-dimensional transition metal dichalcogenide nanosheet-based composites..Chem Soc Rev2015;44:2713-31

[192]

Agarwal V.Recent advances in the field of transition metal dichalcogenides for biomedical applications..Nanoscale2018;10:16365-97

[193]

Chhowalla M,Eda G,Loh KP.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets..Nat Chem2013;5:263-75

[194]

Liu T,Gu X,Cheng L.Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer..Adv Mater2014;26:3433-40

[195]

Wang C,Liu Y,Jiang X.Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy..ACS Biomater Sci Engineering2016;2:2011-7

[196]

Wang Y,Wang Q,Lin H.Hierarchical MoSe2 nanoflowers as novel nanocarriers for NIR-light-mediated synergistic photo-thermal/dynamic and chemo-therapy..Nanoscale2018;10:14534-45

[197]

Wang Y,Chen Z,Wang Q.Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating..Biomaterials2019;217:119282

[198]

Liao W,Zhong Y,Li C.Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy..Onco Targets Ther2018;11:1949-60 PMCID:PMC5896670

[199]

Tammi MI,Pasonen-Seppanen S,Auvinen P.Activated hyaluronan metabolism in the tumor matrix - Causes and consequences..Matrix Biol2019;78-79:147-64

[200]

Muzzio M,Yin Z,Xie J.Monodisperse nanoparticles for catalysis and nanomedicine..Nanoscale2019;11:18946-67

[201]

Shah A.Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations..Nanomedicine2018;14:977-90 PMCID:PMC5899012

[202]

Li J,Shi X.Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy..Adv Colloid Interface Sci2017;249:374-85

[203]

Wang M,Al Kheraif AA,Lin J.Mini Review of TiO2 -based multifunctional nanocomposites for near-infrared light-responsive phototherapy..Adv Healthc Mater2018;7:e1800351

[204]

Raja G,Kim DH.Mechanoregulation of titanium dioxide nanoparticles in cancer therapy..Mater Sci Eng C Mater Biol Appl2020;107:110303

[205]

Ziental D,Mlynarczyk DT,Stanisz B.Titanium dioxide nanoparticles: prospects and applications in medicine..Nanomaterials (Basel)2020;10:387 PMCID:PMC7075317

[206]

Popov AL,Ermakov AM,Ermakova ON.PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity..Mater Sci Eng C Mater Biol Appl2020;108:110494

[207]

Huo D,Chen G,Zhang C.Eradication of unresectable liver metastasis through induction of tumour specific energy depletion..Nat Commun2019;10:3051 PMCID:PMC6624273

[208]

Tian Y,Bai L,Si J.Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy..Int J Biol Macromol2019;137:904-11

[209]

Chang D,Goos J,Ng YY.Biologically targeted magnetic hyperthermia: potential and limitations..Front Pharmacol2018;9:831 PMCID:PMC6083434

[210]

Mohapatra J,Liu JP.Inductive thermal effect of ferrite magnetic nanoparticles..Materials (Basel)2019;12:3208 PMCID:PMC6804282

[211]

Estelrich J,Queralt J.Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery..Int J Mol Sci2015;16:8070-101 PMCID:PMC4425068

[212]

Loh KP,Chiu GNC,Pastorin G.Clinical applications of carbon nanomaterials in diagnostics and therapy..Adv Mater2018;30:e1802368

[213]

Augustine S,Srivastava M,Das A.Recent advances in carbon based nanosystems for cancer theranostics..Biomater Sci2017;5:901-52

[214]

Yuan X,Sun L,Wei X.Cellular toxicity and immunological effects of carbon-based nanomaterials..Part Fibre Toxicol2019;16:18 PMCID:PMC6460856

[215]

Yang K,Liu Z.Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy..Adv Drug Deliv Rev2016;105:228-41

[216]

Vankayala R.Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment..Adv Mater2018;30:e1706320

[217]

Patel KD,Kim HW.Carbon-based nanomaterials as an emerging platform for theranostics..Mater Horiz2019;6:434-69

[218]

de Melo-Diogo D,Alves CG.Graphene family nanomaterials for application in cancer combination photothermal therapy..Biomater Sci2019;7:3534-51

[219]

Hamblin MR.Fullerenes as photosensitizers in photodynamic therapy: pros and cons..Photochem Photobiol Sci2018;17:1515-33 PMCID:PMC6224300

[220]

Wong BS,Jagusiak A,Ho HK.Carbon nanotubes for delivery of small molecule drugs..Adv Drug Deliv Rev2013;65:1964-2015

[221]

Cha C,Annabi N,Khademhosseini A.Carbon-based nanomaterials: multifunctional materials for biomedical engineering..ACS Nano2013;7:2891-7 PMCID:PMC3648999

[222]

Negri V,Calle D.Carbon Nanotubes in biomedicine..Top Curr Chem (Cham)2020;378:15

[223]

Kam NWS,Wisdom JA.Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction..Proc Natl Acad Sci U S A2005;102:11600-5 PMCID:PMC1187972

[224]

Tran HQ,Bhave M.Current advances in the utilization of polydopamine nanostructures in biomedical therapy..Biotechnol J2019;14:e1900080

[225]

Wang Z,Duan Y.Application of polydopamine in tumor targeted drug delivery system and its drug release behavior..J Control Release2018;290:56-74

[226]

Choi JR,Choi JY,Lin Y.Black phosphorus and its biomedical applications..Theranostics2018;8:1005-26 PMCID:PMC5817107

[227]

Shao J,Huang H,Sun Z.Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy..Nat Commun2016;7:12967 PMCID:PMC5056460

[228]

Fu W,Chu PK.Inherent chemotherapeutic anti-cancer effects of low-dimensional nanomaterials..Chemistry (Easton)2019;25:10995-1006

[229]

Qin L,He H,Zhang P.Functional black phosphorus nanosheets for cancer therapy..J Control Release2020;318:50-66

[230]

Li Z,Fan F,Ji H.Piezoelectric materials as sonodynamic sensitizers to safely ablate tumors: a case study using black phosphorus..J Phys Chem Lett2020;11:1228-38

[231]

Wan S,Li S,Pu Y.Combination of PEG-decorated black phosphorus nanosheets and immunoadjuvant for photoimmunotherapy of melanoma..J Mater Chem B2020;

[232]

Yang B,Chen Y.Augmenting tumor-starvation therapy by cancer cell autophagy inhibition..Adv Sci (Weinh)2020;7:1902847 PMCID:PMC7080508

[233]

Yang X,Shi Y,Shao J.Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects..Nanotechnology2018;29:222001

[234]

Aggarwal M,Sinclair E,Jacobs A.Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth..Cell Death Differ2016;23:1615-27 PMCID:PMC5041190

[235]

Yang H,Wan Z,Guo M.Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy..Biomaterials2013;34:9124-33

[236]

Owens EA,Choi J,Choi HS.NIR fluorescent small molecules for intraoperative imaging..Wiley Interdiscip Rev Nanomed Nanobiotechnol2015;7:828-38 PMCID:PMC4520803

[237]

Xue X,Li Y.Porphyrin-based nanomedicines for cancer treatment..Bioconjug Chem2019;30:1585-603

[238]

Wang L,Feng Y,Cheng Y.Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy..Nano Lett2019;19:6800-11

[239]

Charitidis CA,Koklioti MA,Markakis V.Manufacturing nanomaterials: from research to industry..Manufacturing Rev2014;1:11

[240]

Khalid K,Mohd Zaid HF,Lye Chew C.Advanced in developmental organic and inorganic nanomaterial: a review..Bioengineered2020;11:328-55

[241]

Souto EB,Dias-Ferreira J,Ventura F.Nanopharmaceutics: part II-production scales and clinically compliant production methods..Nanomaterials (Basel)2020;10:455 PMCID:PMC7153617

[242]

Yang Y,Xing B.Nanostructures for NIR light-controlled therapies..Nanoscale2017;9:3698-718

[243]

Zhang C,Pei P,Chen B.Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation..Biomaterials2020;237:119835

[244]

Wu S,Ren J.Glutathione depletion in a benign manner by MoS2 -based nanoflowers for enhanced hypoxia-irrelevant free-radical-based cancer therapy..Small2019;15:e1904870

[245]

Wang R,Wang W,Zhang F.In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers..Nat Commun2017;8:14702 PMCID:PMC5353702

[246]

Huang LY,Cui R.Noninvasive in vivo imaging in the second near-infrared window by inorganic nanoparticle-based fluorescent probes..Anal Chem2020;92:535-42

[247]

Tsai SR.Biological effects and medical applications of infrared radiation..J Photochem Photobiol B2017;170:197-207 PMCID:PMC5505738

[248]

Mussttaf RA,Jha AN.Assessing the impact of low level laser therapy (LLLT) on biological systems: a review..Int J Radiat Biol2019;95:120-43

[249]

Boey A.All roads lead to the liver: metal nanoparticles and their implications for liver health..Small2020;

[250]

Lindén M.Biodistribution and excretion of intravenously injected mesoporous silica nanoparticles: implications for drug delivery efficiency and safety.2018;The EnzymesAcademic Press155-80

[251]

Wu T.Review of the effects of manufactured nanoparticles on mammalian target organs..J Appl Toxicol2018;38:25-40

[252]

Zamboni WC,Kozlov SV,Piscitelli JA.Animal models for analysis of immunological responses to nanomaterials: challenges and considerations..Adv Drug Deliv Rev2018;136-137:82-96

[253]

Dawidczyk CM,Searson PC.Recommendations for benchmarking preclinical studies of nanomedicines..Cancer Res2015;75:4016-20 PMCID:PMC4592474

[254]

Shamsi M,Manshadi MKD.Mathematical and computational modeling of nano-engineered drug delivery systems..J Control Release2019;307:150-65

[255]

Yao C,Stanciu SG,Jin Y.Effect of elasticity on the phagocytosis of micro/nanoparticles..J Mater Chem B2020;8:2381-92

[256]

Chou TC.Drug combination studies and their synergy quantification using the Chou-Talalay method..Cancer Res2010;70:440-6

[257]

Roberti A,Torrecillas R,Fernandez AF.Epigenetics in cancer therapy and nanomedicine..Clin Epigenetics2019;11:81 PMCID:PMC6524244

[258]

Ai X,Wang Z,Zhang W.Enhanced cellular ablation by attenuating hypoxia status and reprogramming tumor-associated macrophages via NIR light-responsive upconversion nanocrystals..Bioconjug Chem2018;29:928-38

[259]

Duan M,Li T,Yang S.Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy..Nanoscale2019;11:18426-35

[260]

Moura RP,Pinto S,Sarmento B.Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology..Expert Opin Drug Deliv2019;16:271-85

[261]

Gao W,Lv L,Chen D.Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues..Theranostics2016;6:1131-44 PMCID:PMC4893641

[262]

Busquets MA,Sabaté R.Magnetic nanoparticles cross the blood-brain barrier: when physics rises to a challenge..Nanomaterials2015;5:2231-48 PMCID:PMC5304810

[263]

Qiu Y,Zhang L,Myers DR.Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions..Nat Commun2017;8:15594 PMCID:PMC5472756

[264]

Luo YH,Lin P.Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications..Biomed Res Int2015;2015:143720 PMCID:PMC4466342

[265]

Muhammad Q,Kang SH,Kim WJ.Modulation of immune responses with nanoparticles and reduction of their immunotoxicity..Biomater Sci2020;8:1490-501

[266]

Baeza A.Tumor targeted nanocarriers for immunotherapy..Molecules2020;25:1508 PMCID:PMC7180856

[267]

Kobayashi H.Near-infrared photoimmunotherapy of cancer..Acc Chem Res2019;52:2332-9 PMCID:PMC6704485

[268]

Luengo A,Vander Heiden MG.Targeting metabolism for cancer therapy..Cell Chem Biol2017;24:1161-80 PMCID:PMC5744685

[269]

Feng J,Al Jamal W.Exploiting current understanding of hypoxia mediated tumour progression for nanotherapeutic development..Cancers (Basel)2019;11:E1989 PMCID:PMC6966647

[270]

Bansal A.Glutathione metabolism in cancer progression and treatment resistance..J Cell Biol2018;217:2291-8 PMCID:PMC6028537

[271]

Benizri S,Martin A,Grinstaff MW.Bioconjugated oligonucleotides: recent developments and therapeutic applications..Bioconjug Chem2019;30:366-83 PMCID:PMC6766081

[272]

Ju E,Ramos da Silva S.Gold nanocluster-mediated efficient delivery of Cas9 Protein through pH-induced assembly-disassembly for inactivation of virus oncogenes..ACS Appl Mater Interfaces2019;11:34717-24 PMCID:PMC6763369

[273]

Wang P,Zheng W,Guo Z.Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy..Angew Chem Int Ed Engl2018;57:1491-6

[274]

Anselmo AC.Nanoparticles in the clinic: an update..Bioeng Transl Med2019;4:e10143 PMCID:PMC6764803

[275]

NIH Clinical Trials. Available from: http://clinicaltrials.gov/ct2/home. [Last accessed on 26 May 2020]

[276]

Rastinehad AR,Wajswol E,Sfakianos JP.Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study..Proc Natl Acad Sci U S A2019;116:18590-6 PMCID:PMC6744844

[277]

Espinosa A,Kolosnjaj-Tabi J,Pellegrino T.Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment..ACS Nano2016;10:2436-46

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/