PDF
Abstract
Checkpoint inhibitors act by blocking physiologic mechanisms coopted by tumor cells to evade immune surveillance, restoring the immune system’s ability to identify and kill malignant cells. These therapies have dramatically improved outcomes in multiple tumor types with durable responses in many patients, leading to FDA approval first in advanced melanoma, then in many other malignancies. However, as experience with checkpoint inhibitors has grown, populations of patients who are primary nonresponders or develop secondary resistance have been the majority of cases, even in melanoma. Mechanisms of resistance include those inherent to the tumor microenvironment, the tumor cells themselves, and the function of the patient’s native immune cells. This review will discuss resistance to checkpoint inhibitors in melanoma as well as possible methods to restore sensitivity.
Keywords
Melanoma
/
checkpoint inhibitor
/
resistance
/
nonresponder
/
secondary resistance
Cite this article
Download citation ▾
Sarah E. Fenton, Jeffrey A. Sosman, Sunandana Chandra.
Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors.
Cancer Drug Resistance, 2019, 2(3): 744-761 DOI:10.20517/cdr.2019.28
| [1] |
Mansfield AS,Leiser EA,Markovic SN.The immunomodulatory effects of bevacizumab on systemic immunity in patients with metastatic melanoma..Oncoimmunology2013;2:e24436 PMCID:PMC3667915
|
| [2] |
Emmett MS,Pritchard-Jones RO.Angiogenesis and melanoma - from basic science to clinical trials..Am J Cancer Res2011;1:852-68 PMCID:PMC3196284
|
| [3] |
Siegel RL,Jemal A.Cancer statistics, 2016..CA Cancer J Clin2016;66:7-30
|
| [4] |
Siegel RL,Jemal A.Cancer statistics, 2018..CA Cancer J Clin2018;68:7-30
|
| [5] |
Tas F.Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors..J Oncol2012;2012:647684 PMCID:PMC3391929
|
| [6] |
Carbone PP.Eastern cooperative oncology group studies with DTIC (NSC-45388)..Cancer Treat Rep1976;60:193-8
|
| [7] |
Atkins MB,Dutcher JP,Weiss G.High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993..J Clin Oncol1999;17:2105-16
|
| [8] |
Luke JJ,Ribas A.Targeted agents and immunotherapies: optimizing outcomes in melanoma..Nat Rev Clin Oncol2017;14:463-82
|
| [9] |
Ribas A,Daud A,Wolchok JD.Association of pembrolizumab with tumor response and survival among patients with advanced melanoma..JAMA2016;315:1600-9
|
| [10] |
Larkin J,Wolchok JD.Combined nivolumab and ipilimumab or monotherapy in untreated melanoma..N Engl J Med2015;373:1270-1
|
| [11] |
Schachter JRA,Arance A,Mortier L.Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival analysis of KEYNOTE-006..Lancet Oncol2017;390:1853-62
|
| [12] |
Schadendorf D,Robert C,Margolin K.Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma..J Clin Oncol2015;33:1889-94 PMCID:PMC5089162
|
| [13] |
La-Beck NM,Huynh C,Lowe DB.Immune checkpoint inhibitors: new insights and current place in cancer therapy..Pharmacotherapy2015;35:963-76
|
| [14] |
Ehrlich P.Collected papers in four volumes including a complete bibliography.1956;LondonPergamon Press
|
| [15] |
Burnet FM.Immunological surveillance in neoplasia..Transplant Rev1971;7:3-25
|
| [16] |
Dunn GP,Ikeda H,Schreiber RD.Cancer immunoediting: from immunosurveillance to tumor escape..Nat Immunol2002;3:991-8
|
| [17] |
Schreiber RD,Smyth MJ.Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion..Science2011;331:1565-70
|
| [18] |
Leach DR,Allison JP.Enhancement of antitumor immunity by CTLA-4 blockade..Science1996;271:1734-6
|
| [19] |
Schumacher TN.Neoantigens in cancer..Science2015;348:69-74
|
| [20] |
Ishida Y,Shibahara K.Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death..EMBO1992;11:3887-95 PMCID:PMC556898
|
| [21] |
Syn NL,Mok TSK.De-novo and acquired resistance to immune checkpoint targeting..Lancet Oncol2017;18:e731-41
|
| [22] |
O’Donnell JS,Scolyer RA,Smyth MJ.Resistance to PD/PDL1 checkpoint inhibition..Cancer Treat Rev2017;52:71-81
|
| [23] |
Ribas A,Zaretsky J,Cornish A.PD-1 blockade expands intratumoral memory T cells..Cancer Immunol Res2016;4:194-203 PMCID:PMC4775381
|
| [24] |
Keir ME,Freeman GJ.PD-1 and its ligands in tolerance and immunity..Annu Rev Immunol2008;26:677-704
|
| [25] |
Krummel MF.CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation..J Exp Med1995;182:459-65 PMCID:PMC2192127
|
| [26] |
Brunet JF,Luciani MF,Suzan M.A new member of the immunoglobulin superfamily--CTLA-4..Nature1987;328:267-70
|
| [27] |
Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy..Nat Rev Cancer2012;12:252-64 PMCID:PMC4856023
|
| [28] |
Rooney MS,Wu CJ,Hacohen N.Molecular and genetic properties of tumors associated with local immune cytolytic activity..Cell2015;160:48-61 PMCID:PMC4856474
|
| [29] |
Zaretsky JM,Shin DS,Hugo W.Mutations associated with acquired resistance to PD-1 blockade in melanoma..N Engl J Med2016;375:819-29 PMCID:PMC5007206
|
| [30] |
Zhao F,Horn S,Bielefeld N.Melanoma lesions independently acquire T-cell resistance during metastatic latency..Cancer Res2016;76:4347-58
|
| [31] |
Wang X,Li A,Ye H.Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy..Cancer Res2017;77:839-50 PMCID:PMC5875182
|
| [32] |
Matsushita H,Koboldt DC,Uppaluri R.Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting..Nature2012;482:400-4 PMCID:PMC3874809
|
| [33] |
Verdegaal EM,Visser M,van Buuren MM.Neoantigen landscape dynamics during human melanoma-T cell interactions..Nature2016;536:91-5
|
| [34] |
Arenas-Ramirez N,Boyman O.Epigenetic mechanisms of tumor resistance to immunotherapy..Cell Mol Life Sci2018;75:4163-76
|
| [35] |
Pitt JM,Daillere R,Yamazaki T.Resistance mechanisms to immune-checkpoint blockade in cancer: tumour-intrinsic and -extrinsic factors..Immunity2016;44:1255-69
|
| [36] |
Hodi FS,McDermott DF,Sosman JA.Improved survival with ipilimumab in patients with metastatic melanoma..N Engl J Med2010;363:711-23 PMCID:PMC3549297
|
| [37] |
Robert C,Bondarenko I,Weber J.Ipilimumab plus dacarbazine for previously untreated metastatic melanoma..N Engl J Med2011;364:2517-26
|
| [38] |
Weber JS,Minor D,Gutzmer R.Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial..Lancet Oncol2015;16:375-84
|
| [39] |
Robert C,Brady B,Maio M.Nivolumab in previously untreated melanoma without BRAF mutation..N Engl J Med2015;372:320-30
|
| [40] |
Wolchok JD,Callahan MK,Rizvi NA.Nivolumab plus ipilimumab in advanced melanoma..N Engl J Med2013;369:122-33 PMCID:PMC5698004
|
| [41] |
Wolchok JD,Gonzalez R,Grob JJ.Overall survival with combined nivolumab and ipilimumab in advanced melanoma..N Engl J Med2017;377:1345-56 PMCID:PMC5706778
|
| [42] |
Long GV,Ribas A,Grob JJ.4-year survival and outcomes after cessation of pembrolizumab (pembro) after 2-years in patients (pts) with ipilimumab (ipi)-naïve advanced melanoma in KEYNOTE-006..J Clin Oncol2018;36:Abstract 9503
|
| [43] |
Eggermont AM,Grob JJ,Wolchok JD.Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomized, double-blind, phase 3 trial..Lancet Oncol2015;16:522-30
|
| [44] |
Eggermont AMM,Mandala M,Atkinson V.Adjuvant pembrolizumab versus placebo in resected stage III melanoma..N Engl J Med2018;378:1789-801
|
| [45] |
Weber J,Del Vecchio M,Arance AM.CheckMate 238 Collaborators. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma..N Engl J Med2017;377:1824-35
|
| [46] |
Robert C,Long GV,Grob JJ.Pembrolizumab versus ipilimumab in advanced melanoma..N Engl J Med2015;372:2521-32
|
| [47] |
Robert C,Hamid O,Wolchok JD.Three-year overall survival for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001..J Clin Oncol2016;34:abstr 9503
|
| [48] |
Ribas A,Daud A,Wolchok JD.Association of pembrolizumab with tumor response and survival among patients with advanced melanoma..JAMA2016;315:1600-9
|
| [49] |
Carlino MS,Cebon JS.KEYNOTE-029: efficacy and safety of pembrolizumab (pembro) plus ipilimumab (ipi) for advanced melanoma..J Clin Oncol2017;35:9545
|
| [50] |
Hodi FS,Pavlick AC,Grossmann KF.Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial..Lancet Oncol2016;17:1558-68 PMCID:PMC5630525
|
| [51] |
Topalian SL,Brahmer JR,Smith DC.Safety, activity, and immune correlates of anti-PD-1 antibody in cancer..N Engl J Med2012;366:2443-54 PMCID:PMC3544539
|
| [52] |
Sharma P,Wargo JA.Primary, adaptive and acquired resistance to cancer immunotherapy..Cell2017;168:707-23 PMCID:PMC5391692
|
| [53] |
Jenkins RW,Flaherty KT.Mechanisms of resistance to immune checkpoint inhibitors..Br J Cancer2018;118:9-16 PMCID:PMC5765236
|
| [54] |
Gubin MM,Schuster H,Ward JP.Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens..Nature2014;515:577-81 PMCID:PMC4279952
|
| [55] |
Marincola FM,Hicklin DJ.Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance..Adv Immunol2000;74:181-273
|
| [56] |
Sucker A,Real B,Bielefeld N.Genetic evolution of T-cell resistance in the course of melanoma progression..Clin Cancer Res2014;20:6593-604
|
| [57] |
D’Urso CM,Cao Y,Zeff RA.Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression..J Clin Invest1991;87:284-92 PMCID:PMC295046
|
| [58] |
Restifo NP,Kawakami Y,Yannelli JR.Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy..J Natl Cancer Inst1996;88:100-8 PMCID:PMC2248456
|
| [59] |
Ward PL,Hurteau T,Schreiber H.Major histocompatibility complex class I and unique antigen expression by murine tumors that escaped from CD8+ T-cell-dependent surveillance..Cancer Res1990;50:3851-8
|
| [60] |
Van Allen EM,Schilling B,Blank C.Genomic correlates of response to CTLA-4 blockade in metastatic melanoma..Science2015;350:207-11 PMCID:PMC5054517
|
| [61] |
Lawrence MS,Polak P,Cibulskis K.Mutational heterogeneity in cancer and the search for new cancer-associated genes..Nature2013;499:214-8 PMCID:PMC3919509
|
| [62] |
Le DT,Smith KN,Bartlett BR.Mismatch-repair deficiency predicts response of solid tumours to PD-1 blockade..Science2017;357:409-13 PMCID:PMC5576142
|
| [63] |
Le DT,Wang H,Kemberling H.PD-1 blockade in tumours with mismatch-repair deficiency..N Engl J Med2015;372:2509-20
|
| [64] |
Snyder A,Merghoub T,Zaretsky JM.Genetic basis for clinical response to CTLA-4 blockade in melanoma..N Engl J Med2014;371:2189-99 PMCID:PMC4315319
|
| [65] |
McGranahan N,Rosenthal R,Lyngaa R.Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade..Science2016;351:1463-9 PMCID:PMC4984254
|
| [66] |
Reuben A,Prieto PA,Reddy SM.Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma..NPJ Genom Med2017;2:10 PMCID:PMC5557036
|
| [67] |
Alexandrov LB,Wedge DC,Behjati S.Signatures of mutational processes in human cancer..Nature2013;500:415-21 PMCID:PMC3776390
|
| [68] |
Rizvi NA,Snyder A,Makarov V.Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer..Science2015;348:124-8 PMCID:PMC4993154
|
| [69] |
Coulie PG,van der Bruggen P.Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy..Nat Rev Cancer2014;14:135-46
|
| [70] |
Martin AM,Nirschl CJ,Kochel CM.Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance..Prostate Cancer Prostatic Dis2015;18:325-32 PMCID:PMC4641011
|
| [71] |
Giannakis M,Shukla SA,Cohen O.Genomic correlates of immune-cell infiltrates in colorectal carcinoma..Cell Rep2016;15:857-65 PMCID:PMC4850357
|
| [72] |
Scanlan MJ,Jungbluth AA,Chen YT.Cancer/testis antigens: an expanding family of targets for cancer immunotherapy..Immunol Rev2002;188:22-32
|
| [73] |
James SR,Karpf AR.Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b..Oncogene2006;25:6975-85
|
| [74] |
Yu J,Gu J,Li J.Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma..BMC Cancer2004;4:65 PMCID:PMC520749
|
| [75] |
Yu J,Xu J,Gao B.Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis..BMC Cancer2002;2:29 PMCID:PMC139988
|
| [76] |
Andersen MH,Straten PT.Regulators of apoptosis: suitable targets for immune therapy of cancer..Nat Rev Drug Discov2005;4:399-409
|
| [77] |
Peng W,Liu C,Creasy C.Loss of PTEN promotes resistance to T cell-mediated immunotherapy..Cancer Discov2016;6:202-16 PMCID:PMC4744499
|
| [78] |
Platanias LC.Mechanisms of type-I- and type-II-interferon-mediated signalling..Nature Rev Immunol2005;5:375-86
|
| [79] |
Benci JL,Qiu Y,Dada H.Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade..Cell2016;167:1540-54.e12 PMCID:PMC5385895
|
| [80] |
Shankaran V,Bruce AT,Swanson PE.IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity..Nature2001;410:1107-11
|
| [81] |
Gao J,Zhao H,Xiong L.Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy..Cell2016;167:397-404 PMCID:PMC5088716
|
| [82] |
Shin DS,Escuin-Ordinas H,Hu-Lieskovan S.Primary resistance to PD-1 blockade mediated by JAK1/2 mutations..Cancer Discov2017;7:188-201 PMCID:PMC5296316
|
| [83] |
Manguso RT,Zimmer MD,Yates KB.In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target..Nature2017;547:413-8 PMCID:PMC5924693
|
| [84] |
Hopkins-Donaldson S,Kirtz S,Kandioler D.Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation..Cell Death Differ2003;10:356-64
|
| [85] |
Eramo A,Lotti F,Patti M.Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction..Cancer Res2005;65:11469-77
|
| [86] |
Hugo W,Sun L,Song C.Non-genomic and immune evolution of melanoma acquiring MAPKi resistance..Cell2015;162:1271-85 PMCID:PMC4821508
|
| [87] |
Hugo W,Sun L,Moreno BH.Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma..Cell165:35-44 PMCID:PMC4808437
|
| [88] |
Ayers M,Nebozhyn M,Loboda A.IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade..J Clin Invest2017;127:2930-40 PMCID:PMC5531419
|
| [89] |
Falletta P,Chauhan J,Kenyon A.Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma..Genes Dev2017;31:18-33 PMCID:PMC5287109
|
| [90] |
Shayan G,Li J,Kane LP.Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer..Oncoimmunology2016;6:e1261779 PMCID:PMC5283618
|
| [91] |
Huang RY,McGray AR,Odunsi K.Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer..Oncoimmunology2016;6:e1249561 PMCID:PMC5283642
|
| [92] |
Koyama S,Li YY,Buczkowski KA.Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints..Nat Commun2016;17:10501 PMCID:PMC4757784
|
| [93] |
Gao J,Pettaway CA,Subudhi SK.VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer..Nat Med2017;23:551-5 PMCID:PMC5466900
|
| [94] |
Thommen DS,Muller P,Roller A.Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors..Cancer Immunol Res2015;3:1344-55
|
| [95] |
Rao SV,Graff JN.Predictors of response and resistance to checkpoint inhibitors in solid tumors..Ann Transl Med2017;5:468 PMCID:PMC5733326
|
| [96] |
Pullari B,Shaheen M,Sundarajan S.Tumor microenvironment changes leading to resistance of immune checkpoint inhibitors in metastatic melanoma and strategies to overcome resistance..Pharmacol Res2017;123:95-102
|
| [97] |
Chen W.Immunoregulation by members of the TGFβ superfamily..Nat Rev Immunol2016;16:723-40
|
| [98] |
Powderly JD,Hodi FS,Gettinger SN.Biomarkers and associations with the clinical activity of PD-L1 blockade in a MPDL3280A study..J Clin Oncol2013;31:abstr 3001
|
| [99] |
Chen DS.Elements of cancer immunity and the cancer-immune set point..Nature2017;541:321-30
|
| [100] |
Vilain RE,Wilmott JS,Madore J.Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma..Clin Cancer Res2017;23:5024-33
|
| [101] |
Spranger S,Gajewski TF.Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity..Nature2015;523:231-5
|
| [102] |
Pauken KE,Odorizzi PM,Godec J.Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade..Science2016;354:1160-5 PMCID:PMC5484795
|
| [103] |
Sen DR,Barnitz RA,Gerdemann U.The epigenetic landscape of T cell exhaustion..Science2016;354:1165-9 PMCID:PMC5497589
|
| [104] |
Ngiow SF,Blake SJ,Yagita H.Agonistic CD40 mAb-driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor..Cancer Res2016;76:6266-77
|
| [105] |
Mognol GP,Wong V,Togher S.Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells..Proc Natl Acad Sci USA2017;114:E2776-85 PMCID:PMC5380094
|
| [106] |
Huang AC,Orlowski RJ,Bengsch B.T-cell invigoration to tumour burden ratio associated with anti-PD-1 response..Nature2017;545:60-5 PMCID:PMC5554367
|
| [107] |
Łuksza M,Makarov V,Hellmann MD.A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy..Nature2017;551:517-20 PMCID:PMC6137806
|
| [108] |
Balachandran VP,Zhao JN,Moral JA.Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer..Nature2017;551:512-6 PMCID:PMC6145146
|
| [109] |
Galluzzi L,Aaronson SA,Adam DP.Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018..Cell Death Differ2018;25:486-541 PMCID:PMC5864239
|
| [110] |
Roh W,Reuben A,Prieto PA.Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance..Sci Transl Med2017;9:eaah3560 PMCID:PMC5819607
|
| [111] |
Winograd R,Evans RA,Meyer AR.Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma..Cancer Immunol Res2015;3:399-411 PMCID:PMC4390506
|
| [112] |
Ni K.The role of dendritic cells in T cell activation..Immunol Cell Biol1997;75:223-30
|
| [113] |
Korkolopoulou P,Pezzella F,Gatter KC.Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer..Br J Cancer1996;73:148-53 PMCID:PMC2074307
|
| [114] |
Kelderman S,Haanen JB.Acquired and intrinsic resistance in cancer immunotherapy..Mol Oncol2014;8:1132-9 PMCID:PMC5528612
|
| [115] |
Restifo NP,Snyder A.Acquired resistance to immunotherapy and future challenges..Nat Rev Cancer2016;16:121-6 PMCID:PMC6330026
|
| [116] |
Jager E,Altmannsberger M,Karbach J.Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma..Int J Cancer1997;71:142-7
|
| [117] |
Wu W,Wang Y,Yu G.IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-kappaB/S6K signalings..Acta Biochim Biophys Sin (Shanghai)2015;47:597-603
|
| [118] |
Emeagi PU,Dang N,Thielemans K.Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy..Gene Ther2013;20:1085-92
|
| [119] |
Chattopadhyay G.Antigen-specific induced T regulatory cells impair dendritic cell function via an IL-10/MARCH1-dependent mechanism..J Immunol2013;191:5875-84 PMCID:PMC3858537
|
| [120] |
Hargadon KM,Brandt JP,Ararso YT.Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells..Immunol Cell Biol2016;94:24-38
|
| [121] |
Lindenberg JJ,Lougheed SM,Santegoets SJAM.Functional characterization of a STAT3-dependent dendritic cell-derived CD14+ cell population arising upon IL-10-driven maturation..OncoImmunology2013;2:e23837 PMCID:PMC3654600
|
| [122] |
Hong M,Huang C,Tow C.Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control..Cancer Res2011;71:6997-7009
|
| [123] |
Liu C,Xu C,Zhang M.BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice..Clin Cancer Res2013;19:393-403 PMCID:PMC4120472
|
| [124] |
Spranger S,Horton B.Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy..Cancer Cell2017;31:711-23 PMCID:PMC5650691
|
| [125] |
Massi D,Rulli E,Nassini R.Baseline β-catenin, programmed death-ligand 1 expression and tumour-infiltrating lymphocytes predict response and poor prognosis in BRAF inhibitor-treated melanoma patients..Eur J Cancer2017;78:70-81
|
| [126] |
van Vierken LE,Morehouse C,Groves C.EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter..Stem Cells Transl Med2013;2:43-52 PMCID:PMC3659740
|
| [127] |
Adhikary G,Balasubramanian S,Huang JM.Survival of skin cancer stem cells requires the Ezh2 polycomb group protein..Carcinogenesis2015;36:800-10 PMCID:PMC4580538
|
| [128] |
Zingg D,Schaefer SM,Frommer SC.The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors..Nat Commun2015;6:6051
|
| [129] |
Cao Q,Dhanasekaran SM,Mani RS.Repression of E-cadherin by the polycomb group protein EZH2 in cancer..Oncogene2008;27:7274-84 PMCID:PMC2690514
|
| [130] |
Ma DN,Zhu XD,Zhan DH.MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2..J Hematol Oncol2016;9:1 PMCID:PMC4702409
|
| [131] |
Peng D,Nagarsheth N,Wei S.Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy..Nature2015;527:249-53 PMCID:PMC4779053
|
| [132] |
Nagarsheth N,Kryczek I,Li W.PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer..Cancer Res2016;76:275-82 PMCID:PMC4715964
|
| [133] |
Zingg D,Sahin D,Antunes AT.The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy..Cell Rep2017;20:854-67
|
| [134] |
Oida T,Goto M,Totsuka M.CD4+CD25− T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism..J Immunol2003;170:2516-22
|
| [135] |
Sakaguchi S,Nomura T.Regulatory T cells and immune tolerance..Cell2008;133:775-87
|
| [136] |
Sundstedt A,Nicolson KS.Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo..J Immunol2003;170:1240-8
|
| [137] |
Reichel J,Rubinstein PG,Tam W.Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells..Blood2015;125:1061-72
|
| [138] |
Guo F,Liu J,Xue F.CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks..Oncogene2015;35:816-26
|
| [139] |
Kuang DM,Peng C,Zhang JP.Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1..J Exp Med2009;206:1327-37 PMCID:PMC2715058
|
| [140] |
Kryczek I,Rodriguez P,Wei S.B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma..J Exp Med2006;203:871-81 PMCID:PMC2118300
|
| [141] |
Le DT,Uram JN,Onners B.Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer..J Immunother2013;36:382-9 PMCID:PMC3779664
|
| [142] |
Zhu Y,Meyer MA,West BL.CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models..Cancer Res2014;74:5057-69 PMCID:PMC4182950
|
| [143] |
Meyer C,Costa-Nunes CM,Montandon N.Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab..Cancer Immunol Immunother2014;63:247-57
|
| [144] |
De Henau O,Winkler D,Liu C.Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells..Nature2016;539:443-7 PMCID:PMC5634331
|
| [145] |
Kaneda MM,Ralainirina N,Leem CJ.PI3Kgamma is a molecular switch that controls immune suppression..Nature2016;539:437-42 PMCID:PMC5479689
|
| [146] |
Mariathasan S,Nickles D,Yuen K.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells..Nature2018;554:544-8 PMCID:PMC6028240
|
| [147] |
Tauriello DVF,Stork D,Badia-Ramentol J.TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis..Nature2018;554:538-43
|
| [148] |
Ravi R,Pham V,Zhavoronkov A.Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy..Nat Commun2018;9:741 PMCID:PMC5821872
|
| [149] |
Zhang L,Katsaros D,Massobrio M.Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer..N Engl J Med2003;348:203-13
|
| [150] |
Schaaf MB,Agostinis P.Defining the role of the tumor vasculature in antitumor immunity and immunotherapy..Cell Death Dis2018;9:115 PMCID:PMC5833710
|
| [151] |
Motz GT,Wang LP,Lastra RR.Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors..Nat Med2014;20:607-15 PMCID:PMC4060245
|
| [152] |
Demunter A,Degreef H,van den Oord JJ.Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma..Virchows Arch2001;438:485-91
|
| [153] |
Buckanovich RJ,Kim S,Sasaroli D.Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy..Nat Med2008;14:28-36
|
| [154] |
Ellis LM.VEGF-targeted therapy: mechanisms of anti-tumor activity..Nat Rev Cancer2008;8:579-91
|
| [155] |
Young MR,Coogan M,Bagash J.Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta..Cancer Immunol Immunother1992;35:14-8
|
| [156] |
Commeren DL,Karimi K,Cornelissen JJ.Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells..Immunology2003;110:188-96 PMCID:PMC1783045
|
| [157] |
Delgoffe GM.Filling the tank: keeping antitumor T cells metabolically fit for the long haul..Cancer Immunol Res2016;4:1001-6 PMCID:PMC5408882
|
| [158] |
Barsoum IB,Siemens DR.A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells..Cancer Res2014;74:665-74
|
| [159] |
Scharping NE,Moreci RS,Dadey RE.The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction..Immunity2016;45:701-3
|
| [160] |
Brand A,Koehl GE,Schoenhammer G.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells..Cell Metab2016;24:657-71
|
| [161] |
Young A,Stagg H.Targeting cancer-derived adenosine: new therapeutic approaches..Cancer Discov2014;4:879-88
|
| [162] |
Blank CU,Ribas A.Cancer immunology. The “cancer immunogram”..Science2016;352:658-60
|
| [163] |
Fischer K,Voelkl S,Ammer J.Inhibitory effect of tumor cell-derived lactic acid on human T cells..Blood2017;109:3812-9
|
| [164] |
Weide B,Hassel JC,Postow MA.Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab..Clin Cancer Res2016;22:5487-96 PMCID:PMC5572569
|
| [165] |
Diem S,Spain L,Marconcini R.Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma..Br J Cancer2016;114:256-61 PMCID:PMC4742588
|
| [166] |
Zimmer L,Eroglu Z,Forschner A.Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma..Eur J Cancer2017;75:47-55
|
| [167] |
Gorelik L.Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells..Nat Med2001;7:1118-22
|
| [168] |
Grohmann U,Puccetti P.Tolerance, DCs and tryptophan: much ado about IDO..Trends Immunol2003;24:242-8
|
| [169] |
Curiel TJ,Zou L,Cheng P.Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival..Nat Med2004;10:942-9
|
| [170] |
Rodriguez PC,Zabaleta J,Zea AH.Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses..Cancer Res2004;64:5839-49
|
| [171] |
Platten M,Oezen I,Ochs K.Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors..Front Immunol2015;5:673 PMCID:PMC4290671
|
| [172] |
Mondanelli G,Pallotta MT,Albini E.A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells..Immunity2017;46:233-44 PMCID:PMC5337620
|
| [173] |
Holmgaard RB,Munn DH,Allison JP.Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4..J Exp Med2013;210:1389-402 PMCID:PMC3698523
|
| [174] |
Holmgaard RB,Li Y,Munn DH.Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner..Cell Rep2015;13:412-24 PMCID:PMC5013825
|
| [175] |
Uyttenhove C,Theate I,Colau D.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase..Nat Med2003;9:1269-74
|
| [176] |
Munn DH,Attwood JT,Pashine A.Inhibition of T cell proliferation by macrophage tryptophan catabolism..J Exp Med1999;189:1363-72 PMCID:PMC2193062
|
| [177] |
Spranger S,Zha Y,Meng Y.Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells..Sci Transl Med2013;5:200ra116 PMCID:PMC4136707
|
| [178] |
Spranger S,Horton B,Newton R.Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment..J Immunol Ther Cancer2014;2:3 PMCID:PMC4019906
|
| [179] |
Pushalkar S,Daley D,Kurz E.The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression..Cancer Discov2018;8:403-16 PMCID:PMC6225783
|
| [180] |
Mitsuhashi D,Sukawa Y,Ito M.Association of Fusobacteriumspecies in pancreatic cancer tissues with molecular features and prognosis..Oncotarget2015;6:7209-20 PMCID:PMC4466679
|
| [181] |
Fulbright LE,Arthur JC.The microbiome and the hallmarks of cancer..PLoS Pathog2017;13:e1006480 PMCID:PMC5608396
|
| [182] |
Sivan A,Hubert N,Aquino-Michaels K.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy..Science2015;350:1084-9 PMCID:PMC4873287
|
| [183] |
Vetizou M,Daillere R,Waldschmitt N.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota..Science2015;350:1079-84 PMCID:PMC4721659
|
| [184] |
Mazmanian SK,Tzianabos AO.An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system..Cell2005;122:107-18
|
| [185] |
Mazmanian SK,Kasper DL.A microbial symbiosis factor prevents intestinal inflammatory disease..Nature2008;453:620-5
|
| [186] |
Osherov N.Modulation of host angiogenesis as a microbial survival strategy and therapeutic target..PLoS Pathog2016;12:e1005479-8 PMCID:PMC4831739
|
| [187] |
Grivennikov SI,Mucida D,Schnabl B.Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth..Nature2012;491:254-8 PMCID:PMC3601659
|
| [188] |
Gur C,Isaacson B,Abed J.Binding of the Fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack..Immunity2015;42:344-55 PMCID:PMC4361732
|
| [189] |
Kostic AD,Robertson L,Gallini CA.Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment..Cell Host Microbe2013;14:207-15 PMCID:PMC3772512
|
| [190] |
Takeda K,Hayakawa Y,Ikeda H.IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting..Nat Commun2017;8:14607 PMCID:PMC5333095
|
| [191] |
Anagnostou V,Forde PM,Bhattacharya R.Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer..Cancer Discov2017;7:264-76 PMCID:PMC5733805
|
| [192] |
Pereira C,Pros E,Moro M.Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition..Clin Cancer Res2016;23:3203-13
|
| [193] |
Arenas-Ramirez N,Boyman O.Interleukin-2: biology, design and application..Trends Immunol2015;36:763-77
|
| [194] |
Arenas-Ramirez N,Popp S,Brannetti B.Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2..Sci Transl Med2016;8:367ra166
|
| [195] |
Topalian SL,Pardoll DM.Immune checkpoint blockade: a common denominator approach to cancer therapy..Cancer Cell2015;27:450-61 PMCID:PMC4400238
|
| [196] |
Wherry EJ.T cell exhaustion..Nat Immunol2011;12:492-9
|
| [197] |
Sznol M.Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer..Clin Cancer Res2013;19:1021-34 PMCID:PMC3702373
|
| [198] |
Gide TN,Scolyer RA.Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma..Clin Cancer Res2018;24:1260-70
|
| [199] |
Wherry EJ.Molecular and cellular insights into T cell exhaustion..Nat Rev Immunol2015;15:486-99 PMCID:PMC4889009
|
| [200] |
Shin H.CD8 T cell dysfunction during chronic viral infection..Curr Opin Immunol2007;19:408-15
|
| [201] |
Wei SC,Cogdill AP,Anang NAS.Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade..Cell2017;170:1120-33.e17 PMCID:PMC5591072
|
| [202] |
Sade-Feldman M,Bjorgaard SL,de Boer CG.Defining T cell states associated with response to checkpoint immunotherapy in melanoma..Cell2018;175:998-1013
|
| [203] |
Kurtulus S,Escobar G,Nyman J.Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells..Immunity2019;50:181-94 PMCID:PMC6336113
|
| [204] |
Chaput N,Coutzac C,Le Roux K.Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab..Ann Oncol2017;28:1368-79
|
| [205] |
Wargo JA,Spencer C,Reuben A.Association of the diversity and composition of the gut microbiome with responses and survival (PFS) in metastatic melanoma (MM) patients (pts) on anti-PD-1 therapy..J Clin Oncol2017;35:abstr3008
|
| [206] |
Derosa L,Enot D,Massard C.Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors..Proc Am Soc Clin Oncol2017;35:abstr462
|
| [207] |
Vétizou M,Daillère R,Waldschmitt N.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota..Science2015;350:1079-84 PMCID:PMC4721659
|
| [208] |
Zitvogel L,Routy B.Microbiome and anticancer immunosurveillance..Cell2016;165:276-87
|
| [209] |
Humphries A.The gut microbiota and immune checkpoint inhibitors..Hum Vaccin Immunother2018;14:2178-82 PMCID:PMC6183319
|
| [210] |
McQuade JL,Spencer C,Helmink B.The gut microbiome of melanoma patients is distinct from that of healthy individuals and is impacted by probiotic and antibiotic use..SMR Congress Abstracts2018;Dec.
|
| [211] |
Valpione S,Fava P,Capgana LG.Personalised medicine: development and external validation of a prognostic model for metastatic melanoma patients treated with ipilimumab..Eur J Cancer2015;51:2086-94
|
| [212] |
Nishino M,Manos MP,Buchbinder EI.Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: identifying markers for clinical outcome and treatment decisions..Clin Cancer Res2017;23:4671-9 PMCID:PMC5559305
|
| [213] |
Tumeh PC,Yearley JH,Taylor EJ.PD-1 blockade induces responses by inhibiting adaptive immune resistance..Nature2014;515:568-71 PMCID:PMC4246418
|
| [214] |
Corrales L,Dubensky TW Jr.The host STING pathway at the interface of cancer and immunity..J Clin Invest2016;126:2404-11 PMCID:PMC4922692
|
| [215] |
Fu H,Gittens B,Coe D.Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation..Nat Commun2014;5:3436 PMCID:PMC3959214
|
| [216] |
Lee JM,Peer CJ,Lipkowitz S.Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: a dose-escalation, phase I study..J Clin Oncol2017;35:2193-202 PMCID:PMC5493052
|
| [217] |
Wallin JJ,Funke R,Korski K.Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma..Nat Commun2016;7:12624 PMCID:PMC5013615
|
| [218] |
Bouzin C,De Vriese J,Feron O.Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy..J Immunol2007;178:1505-11
|
| [219] |
Terme M,Marcheteau E,Benhamouda N.VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer..Cancer Res2013;73:539-49
|
| [220] |
Smith HA,Lang JM.Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer..Cancer Res2011;71:6785-95
|
| [221] |
Weber J,Samid D,Herlyn M.Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine..Cancer Res1994;54:1766-71
|
| [222] |
Dubovsky JA.Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor..Prostate2007;67:1781-90
|
| [223] |
Goodyear O,Novitzky-Basso I,McSkeane T.Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia..Blood2010;116:1908-18
|
| [224] |
Woo SR,Goldberg MV,Selby M.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape..Cancer Res2012;72:917-27 PMCID:PMC3288154
|
| [225] |
Foy SP,dela Cruz T,Gordon EJ.Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, yielding complete tumor regression in mice..PLoS One2016;11:e0150084 PMCID:PMC4765931
|
| [226] |
Ngiow SF,Akiba H,Teng MW.Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors..Cancer Res2011;71:3540-51
|
| [227] |
Sakuishi K,Sullivan JM,Kuchroo VK.Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity..J Exp Med2010;207:2187-94 PMCID:PMC2947065
|
| [228] |
Heninger E,Lang JM.Augmenting antitumor immune responses with epigenetic modifying agents..Front Immunol2015;6:29 PMCID:PMC4316783
|
| [229] |
Gangadhar TC,Smith DC,Wasser JS.Epacadostat plus pembrolizumab in patients with advanced melanoma and select solid tumors: updated phase 1 results from ECHO-202/KEYNOTE-037..Ann Oncol2016;27:1110PD
|
| [230] |
Gangadhar TC,Bauer TM,Spira AI.Efficacy and safety of epacadostat plus pembrolizumab treatment of NSCLC: preliminary phase I/II results of ECHO-202/KEYNOTE-037..J Clin Oncol2017;35:abstr9014
|
| [231] |
Smith DC,Hamid O,Olszanski AJ.Epacadostat plus pembrolizumab in patients with advanced urothelial carcinoma: preliminary phase I/II results of ECHO-202/KEYNOTE-037..J Clin Oncol2018;JCO2018789602: PMCID:PMC6225502
|
| [232] |
Kakavand H,Menzies AM,Haydu LE.PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients..Clin Cancer Res2015;21:3140-8
|
| [233] |
Pfirschke C,Rickelt S,Garris C.Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy.Immunity2016;44:343-54 PMCID:PMC4758865
|
| [234] |
Lin RL.Mechanistic basis and clinical relevance of the role of transforming growth factor-beta in cancer..Cancer Biol Med2015;12:385-93 PMCID:PMC4706525
|
| [235] |
Massague J.TGFbeta in Cancer..Cell2008;134:215-30 PMCID:PMC3512574
|
| [236] |
Hanks BA, Holtzhausen A, Evans K, Heid M, Blobe GC. Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAFV600E-PTEN-/-transgenic model of melanoma. Available from: https://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.3011. [Last accessed on 21 Jun 2019]
|
| [237] |
Jerby-Arnon L,Cuoco MS,Su MJ.A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade..Cell2018;175:984-91 PMCID:PMC6410377 [Available on 2019-11-01]
|
| [238] |
Spiotto MT,Schreiber H.Bystander elimination of antigen loss variants in established tumors..Nat Med2004;10:294-8
|
| [239] |
Van Willigne WW,Gerritsen WR,de Vries IJM.Dendritic cell cancer therapy: vaccinating the right patient at the right time..Front Immunol2018;9:2265 PMCID:PMC6174277
|
| [240] |
Twyman-Saint Victor C,Maity A,Pauken KE.Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer..Nature2015;520:373-7 PMCID:PMC4401634
|
| [241] |
Pauken KE.Overcoming T cell exhaustion in infection and cancer..Trends Immun2015;36:265-76 PMCID:PMC4393798
|
| [242] |
Emens LA.Cancer vaccines: on the threshold of success..Expert Opin Emerg Drugs2008;13:295-308 PMCID:PMC3086397
|
| [243] |
Berraondo P,Ochoa MC,Aznar MA.Cytokines in clinical cancer immunotherapy..Br J Cancer2019;120:6-15 PMCID:PMC6325155
|