Cancer drug resistance: rationale for drug delivery systems and targeted inhibition of HSP90 family proteins

Clélia Mathieu , Samir Messaoudi , Elias Fattal , Juliette Vergnaud-Gauduchon

Cancer Drug Resistance ›› 2019, Vol. 2 ›› Issue (3) : 381 -398.

PDF
Cancer Drug Resistance ›› 2019, Vol. 2 ›› Issue (3) :381 -398. DOI: 10.20517/cdr.2019.26
Review
review-article

Cancer drug resistance: rationale for drug delivery systems and targeted inhibition of HSP90 family proteins

Author information +
History +
PDF

Abstract

Nanocarriers have been developed in order to protect drugs or to improve drugs efficiency by reaching the damaged tissue and avoiding systemic and local toxicity. By using HSP90 inhibitors, some cancer drug resistances have been overcome and the loading into nanocarriers of such drugs has shown an increase of their activities. This review will present some advantages of HSP90 inhibitors to treat resistant tumors; especially those targeting the mitochondrial protein TRAP1. We will also focus on the targeting of the primary tumors, cancer stem cells and metastatic cells.

Keywords

Heat-shock proteins / cancer / resistance / nanoparticles

Cite this article

Download citation ▾
Clélia Mathieu, Samir Messaoudi, Elias Fattal, Juliette Vergnaud-Gauduchon. Cancer drug resistance: rationale for drug delivery systems and targeted inhibition of HSP90 family proteins. Cancer Drug Resistance, 2019, 2(3): 381-398 DOI:10.20517/cdr.2019.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nussinov R,Jang H.A new view of pathway-driven drug resistance in tumor proliferation..Trends Pharmacol Sci2017;38:427-37 PMCID:PMC5403593

[2]

Gentric G,Mechta-Grigoriou F.Heterogeneity in cancer metabolism: new concepts in an old field..Antioxid Redox Signal2016;26:462-85 PMCID:PMC5359687

[3]

Gupta PB,Skibinski A,Kuperwasser C.Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance..Cell Stem Cell2019;24:65-78

[4]

Vargas-Roig LM,Tello O,Ciocca DR.Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy..Int J Cancer1998;79:468-75

[5]

Stope MB,Burchardt M,Zygmunt M.Jump in the fire - heat shock proteins and their impact on ovarian cancer therapy..Crit Rev Oncol Hematol2016;97:152-6

[6]

Yallowitz A,Garcia L,Marchenko N.Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells article..Cell Death Dis2018;9:621 PMCID:PMC5967334

[7]

Ozben T.Mechanisms and strategies to overcome multiple drug resistance in cancer..FEBS Lett2006;580:2903-9

[8]

Jang B,Katila P,Lee H.Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies..Adv Drug Deliv Rev2016;98:113-33

[9]

Liu JP,Wang DG,Li YP.Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers..Acta Pharmacol Sin2017;38:1-8 PMCID:PMC5220546

[10]

Zhang RX,Xue HY,Wu XY.Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives..J Control Release2016;240:489-503 PMCID:PMC5064882

[11]

Cardoso F,Winer EP,Senkus-Konefka E.International guidelines for management of metastatic breast cancer: combination vs sequential single-agent chemotherapy..J Natl Cancer Inst2009;101:1174-81 PMCID:PMC2736293

[12]

Zhang B,Pang Z.Modulating the tumor microenvironment to enhance tumor nanomedicine delivery..Front Pharmacol2017;8:952 PMCID:PMC5744178

[13]

Tashima T.Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocytosis..Bioorganic Med Chem Lett2018;28:3015-24

[14]

Cui J.Current status and advances in arginine-glycine-aspartic acid peptide-based molecular imaging to evaluate the effects of anti-angiogenic therapies..Precis Radiat Oncol2019;3:29-34

[15]

Carpenter RO,Pittaluga S,Raffeld M.B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma..Clin Cancer Res2013;19:2048-60 PMCID:PMC3630268

[16]

Acres B.MUC1 as a target antigen for cancer immunotherapy..Expert Rev Vaccines2005;4:493-502

[17]

Mattheolabakis G,Singh A.Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine..J Drug Target2015;23:605-18

[18]

Saneja A,Kumar R,Panda AK.CD44 targeted PLGA nanomedicines for cancer chemotherapy..Eur J Pharm Sci2018;121:47-58

[19]

Necas J,Brauner P.Hyaluronic acid (hyaluronan): a review..Vet Med (Praha)2008;53:397-411

[20]

Sun Y,Zhang L,Jiang B.Cell permeable NBD peptide-modified liposomes by hyaluronic acid coating for the synergistic targeted therapy of metastatic inflammatory breast cancer..Mol Pharm2019;16:1140-55

[21]

Dufay Wojcicki A,Nascimento TL,Taverna M.Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor..J Control Release2012;162:545-52

[22]

Nascimento TL,Vergnaud J.Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs..Nanomedicine2016;11:1865-87

[23]

Dosio F,Stella B.Hyaluronic acid for anticancer drug and nucleic acid delivery..Adv Drug Deliv Rev2016;97:204-36

[24]

Nascimento TL,Noiray M,Arpicco S.Supramolecular organization and siRNA binding of hyaluronic acid-coated lipoplexes for targeted delivery to the CD44 receptor..Langmuir2015;31:11186-94

[25]

Lee SY.Mitochondria targeting and destabilizing hyaluronic acid derivative-based nanoparticles for the delivery of lapatinib to triple-negative breast cancer..Biomacromolecules2019;20:835-45

[26]

Tevaarwerk AJ.Lapatinib: a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer..Clin Ther2009;31:2332-48

[27]

Zhang M,Wang Z,Gao W.A CD44-targeting programmable drug delivery system for enhancing and sensitizing chemotherapy to drug-resistant cancer..ACS Appl Mater Interfaces2019;11:5851-61

[28]

Lu L,Zhang Y,Zhao Y.Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII..Int J Nanomedicine2018;13:1927-44 PMCID:PMC5880182

[29]

Kennedy PJ,Ferreira D,Nestor M.Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6..Acta Biomater2018;81:208-18

[30]

Alshaer W,Fattal E.Aptamer-guided nanomedicines for anticancer drug delivery..Adv Drug Deliv Rev2018;134:122-37

[31]

Ismail SI.Therapeutic aptamers in discovery, preclinical and clinical stages..Adv Drug Deliv Rev2018;134:51-64

[32]

Alshaer W,Vergnaud J,Fattal E.Functionalizing Liposomes with anti-CD44 aptamer for selective targeting of cancer cells..Bioconjug Chem2015;26:1307-13

[33]

Alshaer W,Vergnaud J,Deloménie C.Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model..J Control Release2018;271:98-106

[34]

Lou S,Dezort M,Zhang C.Multifunctional nanosystem for targeted and controlled delivery of multiple chemotherapeutic agents for the treatment of drug-resistant breast cancer..ACS Omega2018;3:9210-9 PMCID:PMC6120734

[35]

Zhou L,Li Y.Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance..Theranostics2018;8:1059-74 PMCID:PMC5817110

[36]

Qin SY,Lei Q,Zhang XZ.Combinational strategy for high-performance cancer chemotherapy..Biomaterials2018;171:178-97

[37]

Chen M,Gao C,Zhang N.Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer..ACS Nano2018;12:7312-26

[38]

Blanco E,Ferrari M.Principles of nanoparticle design for overcoming biological barriers to drug delivery..Nat Biotechnol2015;33:941-51 PMCID:PMC4978509

[39]

Mu X,Yan S,Zhang W.SiRNA Delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy..ACS Biomater Sci Eng2018;4:3895-905

[40]

Cheng G,Ha L,Hao S.Self-Assembly of Extracellular Vesicle-like Metal–Organic Framework Nanoparticles for Protection and Intracellular Delivery of Biofunctional Proteins..J Am Chem Soc2018;140:7282-91

[41]

He H,Wang J,Wang XY.Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing..Nano Lett2018;18:6164-74 PMCID:PMC6292712

[42]

Anchordoquy TJ,Boraschi D,Decuzzi P.Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions..ACS Nano2017;11:12-8 PMCID:PMC5542883

[43]

Mülhopt S,Dilger M,Anderlohr C.Characterization of nanoparticle batch-to-batch variability..Nanomaterials2018;8:311 PMCID:PMC5977325

[44]

Wilhelm S,Dai Q,Audet J.Analysis of nanoparticle delivery to tumours..Nat Rev Mater2016;1:16014

[45]

Zhang YN,Tavares AJ,Chan WCW.Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination..J Control Release2016;240:332-48

[46]

Rasmussen K,Mech A,Gilliland D.Physico-chemical properties of manufactured nanomaterials - characterisation and relevant methods. An outlook based on the OECD Testing Programme..Regul Toxicol Pharmacol2018;92:8-28 PMCID:PMC5817049

[47]

Hoter A,Naim HY.The HSP90 family: structure, regulation, function, and implications in health and disease..Int J Mol Sci2018;19:2560 PMCID:PMC6164434

[48]

Schopf FH,Buchner J.The HSP90 chaperone machinery..Nat Rev Mol Cell Biol2017;18:345-60

[49]

Prodromou C.Mechanisms of Hsp90 regulation..Biochem J2016;473:2439-52 PMCID:PMC4980810

[50]

Canonici A,Conlon NT,O’Brien NA.The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells..Invest New Drugs2018;36:581-9

[51]

Zhang G,Liu Y,Wang W.CD44 clustering is involved in monocyte differentiation..Acta Biochim Biophys Sin (Shanghai)2014;46:540-7

[52]

Mellatyar H,Pilehvar-Soltanahmadi Y,Akbarzadeh A.Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art..Biomed Pharmacother2018;102:608-17

[53]

Wang Y.N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes..Chem Commun (Camb)2015;51:1410-3

[54]

Wang X,Zhou J.HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review)..Int J Oncol2014;45:18-30

[55]

Koay YC,Wang Y,Buckton LK.Chemically accessible hsp90 inhibitor that does not induce a heat shock response..ACS Med Chem Lett2014;5:771-6 PMCID:PMC4094262

[56]

Audisio D,Radanyi C,Denis S.Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors..Eur J Med Chem2014;83:498-507

[57]

Radanyi C,Messaoudi S,Peyrat JF.Synthesis and biological activity of simplified denoviose-coumarins related to novobiocin as potent inhibitors of heat-shock protein 90 (hsp90)..Bioorg Med Chem Lett2008;18:2495-8

[58]

Audisio D,Cegielkowski L,Brion JD.Discovery and biological activity of 6BrCaQ as an inhibitor of the Hsp90 protein folding machinery..ChemMedChem2011;6:804-15

[59]

Radanyi C,Marsaud V,Messaoudi S.Antiproliferative and apoptotic activities of tosylcyclonovobiocic acids as potent heat shock protein 90 inhibitors in human cancer cells..Cancer Lett2009;274:88-94

[60]

Donnelly A.Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket..Curr Med Chem2008;15:2702-17 PMCID:PMC2729083

[61]

Shelton SN,Matthews SB,Donnelly AC.KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells..Mol Pharmacol2009;76:1314-22 PMCID:PMC2784729

[62]

Terracciano S,Chini MG,Potenza M.Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain..Sci Rep2018;8:1709 PMCID:PMC5786060

[63]

Zhang FZ,Wong RHF.Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner..Oncotarget2018;9:22301-15 PMCID:PMC5976465

[64]

Bhatia S,Frieg B,Stein S.Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response..Blood2018;132:307-20 PMCID:PMC6225350

[65]

Hyun SY,Nguyen CT,Boo HJ.Development of a novel Hsp90 inhibitor NCT-50 as a potential anticancer agent for the treatment of non-small cell lung cancer..Sci Rep2018;8:13924 PMCID:PMC6141536

[66]

Sidera K.HSP90 inhibitors: current development and potential in cancer therapy..Recent Pat Anticancer Drug Discov2014;9:1-20

[67]

Solárová Z,Solár P.Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review)..Int J Oncol2015;46:907-26

[68]

Ernst JT,Liu M,Zuccola H.Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as huntington’s disease..J Med Chem2014;57:3382-400

[69]

Zou M,Dong H,Guo J.Evolutionarily conserved dual lysine motif determines the non-chaperone function of secreted Hsp90alpha in tumour progression..Oncogene2017;36:2160-71 PMCID:PMC5386837

[70]

Yoshida S,Muhlebach G,Lee MJ.Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis..Proc Natl Acad Sci2013;110:E1604-12 PMCID:PMC3637790

[71]

Randow F.Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability..Nat Cell Biol2001;3:891-6

[72]

Lee AS.Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential..Nat Rev Cancer2014;14:263-76 PMCID:PMC4158750

[73]

Immormino RM,Reardon PN,Blagg BS.Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design..J Mol Biol2009;388:1033-42 PMCID:PMC2692672

[74]

Muth A,Khandelwal A,Zhao J.Development of radamide analogs as Grp94 inhibitors..Bioorganic Med Chem2014;22:4083-98 PMCID:PMC4142655

[75]

Patel HJ,Ochiana SO,Sun W.Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94..J Med Chem2015;58:3922-43 PMCID:PMC4518544

[76]

Mishra SJ,Stothert AR,Blagg BS.Transformation of the non-selective aminocyclohexanol-based Hsp90 inhibitor into a Grp94-seletive scaffold..ACS Chem Biol2017;12:244-53 PMCID:PMC5568423

[77]

Khandelwal A,Blagg BSJ.Resorcinol-Based Grp94-Selective Inhibitors..ACS Med Chem Lett2017;8:1013-8 PMCID:PMC5641966

[78]

Crowley VM,Lieberman RL.Second generation Grp94-selective inhibitors provide opportunities for the inhibition of metastatic cancer..Chem - A Eur J2017;23:15775-82 PMCID:PMC5722212

[79]

Stothert AR,Tang X,Mishra SJ.Isoform-selective Hsp90 inhibition rescues model of hereditary open-angle glaucoma..Sci Rep2017;7:17951 PMCID:PMC5738387

[80]

Costantino E,Calise S,Tirino V.TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells..Cancer Lett2009;279:39-46

[81]

Palladino G,Pannone G,Lamacchia O.TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells..Endocr Relat Cancer2016;23:699-709

[82]

Agorreta J,Liu D,Turley H.Cell cycle and senescence TRAP1 regulates proliferation, mitochondrial function, and has prognostic significance in NSCLC..Mol Cancer Res2014;12:660-9

[83]

Masgras I,Colombo G.The chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells..Front Oncol2017;7:58 PMCID:PMC5370238

[84]

Landriscina M,Maddalena F,Piscazzi A.Mitochondrial chaperone trap1 and the calcium binding protein sorcin interact and protect cells against apoptosis induced by antiblastic agents..Cancer Res2010;70:6577-86

[85]

Park HK,Ko E,Lee JE.Paralog specificity determines subcellular distribution, action mechanism, and anticancer activity of TRAP1 inhibitors..J Med Chem2017;60:7569-78

[86]

Plescia J,Xia F,Zaffaroni N.Rational design of shepherdin, a novel anticancer agent..Cancer Cell2005;7:457-68

[87]

Kang BH,Song HY,Colombo G.Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90..J Clin Invest2009;119:454-64 PMCID:PMC2648691

[88]

Zielonka J,Sikora A,Ouari O.Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications..Chem Rev2017;117:10043-120 PMCID:PMC5611849

[89]

Rondanin R,Oliva P,Costantini C.New TRAP1 and Hsp90 chaperone inhibitors with cationic components: preliminary studies on mitochondrial targeting..Bioorganic Med Chem Lett2018;28:2289-93

[90]

Yoo SH,Rho JH,Yun J.Targeted inhibition of mitochondrial Hsp90 induces mitochondrial elongation in Hep3B hepatocellular carcinoma cells undergoing apoptosis by increasing the ROS level..Int J Oncol2015;47:1783-92

[91]

Yan C,Yoo SH,Yoon YG.The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis..Toxicol Appl Pharmacol2013;266:9-18

[92]

Ishida CT,Bruce JN,Siegelin MD.Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses..Cancer Res2017;77:3513-26 PMCID:PMC5503474

[93]

Kang BH,Plescia J,Garlick DS.Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer..Clin Cancer Res2010;16:4779-88 PMCID:PMC2948625

[94]

Hou XS,Mugaka BP,Ding Y.Mitochondria: promising organelle targets for cancer diagnosis and treatment..Biomater Sci2018;6:2786-97

[95]

Amoroso MR,Agliarulo I,Maddalena F.Stress-adaptive response in ovarian cancer drug resistance: role of TRAP1 in oxidative metabolism-driven inflammation..Adv Protein Chem Struct Biol2017;108:163-98

[96]

Sciacovelli M,Morello V,Zheng L.The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase..Cell Metab2013;17:988-99 PMCID:PMC3677096

[97]

Matassa DS,Avolio R,Esposito F.Trap1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor..Genes (Basel)2018;9:195 PMCID:PMC5924537

[98]

Maddalena F,Lettini G,Matassa DS.Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1..Mol Oncol2013;7:895-906 PMCID:PMC5528458

[99]

Calero R,Martinez-Argudo I.Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma..Cancer Lett2017;406:1-11

[100]

Wang H,Guo J,Jiang H.3-O-(Z)-coumaroyloleanolic acid overcomes Cks1b-induced chemoresistance in lung cancer by inhibiting Hsp90 and MEK pathways..Biochem Pharmacol2017;135:35-49

[101]

McLaughlin M,Khan AA,Dillon M.HSP90 inhibition sensitizes head and neck cancer to platin-based chemoradiotherapy by modulation of the DNA damage response resulting in chromosomal fragmentation..BMC Cancer2017;17:86 PMCID:PMC5282703

[102]

Jacobson C,Layer JV,Tschuri S.HSP90 inhibition overcomes ibrutinib resistance in mantle cell lymphoma..Blood2016;128:2517-26

[103]

Park KS,Choi J,Kim D.The HSP90 inhibitor, NVP-AUY922, attenuates intrinsic PI3K inhibitor resistance in KRAS-mutant non-small cell lung cancer..Cancer Lett2017;406:47-53

[104]

Park KS,Lee MH,Jin HR.The HSP90 inhibitor, NVP-AUY922, sensitizes KRAS-mutant non-small cell lung cancer with intrinsic resistance to MEK inhibitor, trametinib..Cancer Lett2016;372:75-81

[105]

Bai J,Qiu Y,Liu J.HSP90 inhibitor AUY922 can reverse Fulvestrant induced feedback reaction in human breast cancer cells..Cancer Sci2017;108:1177-84 PMCID:PMC5480065

[106]

Geng K,Song Z,Zhang M.Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs..Eur J Med Chem2018;152:76-86

[107]

Jiang J,Li Z,Niu D.Ganetespib overcomes resistance to PARP inhibitors in breast cancer by targeting core proteins in the DNA repair machinery..Invest New Drugs2017;35:251-9

[108]

Huang L,Sun X,Huang Z.A tumor-targeted Ganetespib-zinc phthalocyanine conjugate for synergistic chemo-photodynamic therapy..Eur J Med Chem2018;151:294-303

[109]

Jhaveri K,Teplinsky E,Solit D.A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer..Breast Cancer Res2017;19:89 PMCID:PMC5540198

[110]

Cavenagh J,Baetiong-Caguioa P,Gharibo M.A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma..Br J Cancer2017;117:1295-302 PMCID:PMC5672925

[111]

Sauvage F,Fattal E,Vergnaud-Gauduchon J.Heat shock proteins and cancer: how can nanomedicine be harnessed?.J Control Release2017;248:133-43

[112]

Le B,Tam YT,Malinowski RL.Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/ mTOR pathway in prostate cancer..PLoS One2017;12:e0174658 PMCID:PMC5370140

[113]

Shin DH.Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model..J Control Release2017;268:176-83 PMCID:PMC5722673

[114]

Peng CL,Lee PC,Chen YI.A novel temperature-responsive micelle for enhancing combination therapy..Int J Nanomedicine2016;11:3357-69 PMCID:PMC4966578

[115]

Long Q,Huang Y,Ma AH.Image-guided photo-therapeutic nanoporphyrin synergized HSP90 inhibitor in patient-derived xenograft bladder cancer model..Nanomedicine2018;14:789-99 PMCID:PMC5898975

[116]

Sauvage F,Al-Shaer W,Brotin E.Antitumor activity of nanoliposomes encapsulating the novobiocin analog 6BrCaQ in a triple-negative breast cancer model in mice..Cancer Lett2018;432:103-11

[117]

Sauvage F,Bruneau A,Denis S.Formulation and in vitro efficacy of liposomes containing the Hsp90 inhibitor 6BrCaQ in prostate cancer cells..Int J Pharm2016;499:101-9

[118]

Rahimi MN,Farazi S,McAlpine SR.Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype..Chem Commun (Camb)2019;55:4515-8

[119]

Mondal SK,Pal K,Dutta SK.Glucocorticoid receptor-targeted liposomal codelivery of lipophilic drug and anti-Hsp90 gene: strategy to induce drug-sensitivity, EMT-reversal, and reduced malignancy in aggressive tumors..Mol Pharm2016;13:2507-23 PMCID:PMC5312262

[120]

Pore SK,Rathore B,Sujitha P.Hsp90-targeted miRNA-liposomal formulation for systemic antitumor effect..Biomaterials2013;34:6804-17

[121]

Mitra K,Lyons CE.Hyaluronic acid grafted nanoparticles of a platinum(ii)-silicon(iv) phthalocyanine conjugate for tumor and mitochondria-targeted photodynamic therapy in red light..J Mater Chem B2018;6:7373-7

[122]

Wang K,Guo C,Wang B.Novel dual mitochondrial and CD44 receptor targeting nanoparticles for redox stimuli-triggered release..Nanoscale Res Lett2018;13:32 PMCID:PMC5796929

[123]

Thomas AP,Jeena MT,Ryu JH.Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye..Chem Sci2017;8:8351-6 PMCID:PMC5858757

[124]

Wei G,Huang X,Zhao J.Induction of mitochondrial apoptosis for cancer therapy: Via dual-targeted cascade-responsive multifunctional micelles..J Mater Chem B2018;6:8137-47

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/