Emerging biomarkers for early detection of lung cancer

Pushpendra Kumar Khangar , Vivek Daniel , Sudha Vengurlekar , Kratika Daniel , Sachin Kumar Jain

Clinical Cancer Bulletin ›› 2025, Vol. 4 ›› Issue (1) : 24

PDF
Clinical Cancer Bulletin ›› 2025, Vol. 4 ›› Issue (1) :24 DOI: 10.1007/s44272-025-00046-y
Review
review-article

Emerging biomarkers for early detection of lung cancer

Author information +
History +
PDF

Abstract

Lung cancer remains the leading cause of cancer-related mortality worldwide, largely due to its asymptomatic nature in early stages and consequent late diagnosis. The development of reliable, non-invasive biomarkers for early detection is critical to improving prognosis and survival rates. Recent advances in omics technologies and liquid biopsy have led to the identification of novel biomarkers, including circulating tumor DNA (ctDNA), microRNAs (miRNAs), exosomes, and protein signatures. These biomarkers show promise in enhancing diagnostic accuracy, risk stratification, and monitoring of disease progression. This review highlights the current landscape of emerging biomarkers for early lung cancer detection, evaluates their clinical utility, and discusses the challenges in their translation to routine clinical practice. Integration of these biomarkers with imaging and artificial intelligence-based diagnostic tools may offer a transformative approach for early lung cancer diagnosis.

Keywords

Lung cancer / Early detection / Biomarkers / Liquid biopsy / MicroRNAs

Cite this article

Download citation ▾
Pushpendra Kumar Khangar, Vivek Daniel, Sudha Vengurlekar, Kratika Daniel, Sachin Kumar Jain. Emerging biomarkers for early detection of lung cancer. Clinical Cancer Bulletin, 2025, 4(1): 24 DOI:10.1007/s44272-025-00046-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Koning HJ, Van Der Aalst CM, De Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JJ, Weenink C, Yousaf-Khan U, Horeweg N, Van ’t Westeinde S, Prokop M, Mali WP, Hoesein FaM, Van Ooijen PM, Aerts JG, Bakker MaD, Thunnissen E, Verschakelen J, Oudkerk M. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. New England Journal of Medicine. 2020;382(6):503–513. https://doi.org/10.1056/nejmoa1911793.

[2]

Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov, 2016, 6(5): 479-491

[3]

Hirsch FR, Franklin WA, Gazdar AF, Bunn PAJr. Early detection plays a vital role in improving survival chances as well as remaining able to live better. Clin Cancer Res, 2001, 7(1): 5-22

[4]

Spiro SG, Porter JC. Lung cancer—where are we today? Current advances in staging and nonsurgical treatment. Am J Respir Crit Care Med, 2002, 166(9): 1166-1196

[5]

Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5): e278S-e313S

[6]

Clinic M. Minimally invasive surgery. n.d. Retrieved February 11, 2025, from https://www.mayoclinic.org/tests-procedures/minimally-invasive-surgery/about/pac-20384771.

[7]

Vera-Llonch M, Weycker D, Glass A, Gao S, Borker R, Barber B, Oster G. Healthcare costs in patients with metastatic lung cancer receiving chemotherapy. BMC Health Serv Res, 2011, 11(1 305

[8]

Hasan N, Kumar R, Kavuru MS. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers. Lung, 2014, 192: 639-648

[9]

Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers-current perspectives. Indian J Med Res, 2010, 132(2): 129-149

[10]

Marchione DM, Garcia BA, Wojcik J. Proteomic approaches for cancer epigenetics research. Expert Rev Proteomics, 2019, 16(1): 33-47

[11]

Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol, 2024

[12]

Santos V, Freitas C, Fernandes MGO, Sousa C, Reboredo C, Cruz-Martins N, Mosquera J, Hespanhol V, Campelo R. Liquid biopsy: the value of different bodily fluids. Biomarkers Med, 2022, 16(2): 127-145

[13]

Sarhadi VK, Armengol G. Molecular biomarkers in cancer. Biomolecules, 2022, 12(8 1021

[14]

Schneider G, Schmidt-Supprian M, Rad R, Saur D. Tissue-specific tumorigenesis: context matters. Nat Rev Cancer, 2017, 17(4): 239-253

[15]

Sawyers CL. The cancer biomarker problem. Nature, 2008, 452(7187): 548-552

[16]

Duffy MJ, Crown J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin Chem, 2019, 65(10): 1228-1238

[17]

Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther, 2024, 9(1): 132

[18]

Bodaghi A, Fattahi N, Ramazani A. Biomarkers: promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon, 2023

[19]

Zhang T, Wan B, Zhao Y, Li C, Liu H, Lv T, Zhan P, Song Y. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Translational lung cancer research. 2019;8(3):302. https://tlcr.amegroups.org/article/view/28832.

[20]

Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol, 2008, 21(2S16-S22

[21]

Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther, 2021, 6(1 386

[22]

Rekhtman N, Ang DC, Riely GJ, Ladanyi M, Moreira AL. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol, 2013, 26(10): 1307-1319

[23]

Addeo A, Banna GL, Friedlaender A. KRAS G12C mutations in NSCLC: from target to resistance. Cancers, 2021, 13(11 2541

[24]

Lei Y, Lei Y, Shi X, Wang J. EML4-ALK fusion gene in non-small cell lung cancer. Oncol Lett, 2022, 24(2): 1-6

[25]

Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, Gasparini P, Perrone F, Modena P, Pastorino U. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol, 2009, 174(2): 661-670

[26]

Bearz A, Bertoli E, Stanzione B, De Carlo E, Del Conte A, Bortolot M, Torresan S, Berto E, Da Ros V, Pelin GM. EML4-ALK: update on ALK inhibitors. Int J Mol Sci, 2025, 26(1 308

[27]

Elshatlawy M, Sampson J, Clarke K, Bayliss R. EML4-ALK biology and drug resistance in non-small cell lung cancer: a new phase of discoveries. Mol Oncol, 2023, 17(6): 950-963

[28]

Bergethon K, Shaw AT, Ignatius Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 2012, 30(8): 863-870

[29]

Uguen A, De Braekeleer M. ROS1 fusions in cancer: a review. Future Oncol, 2016, 12(16): 1911-1928

[30]

Dagogo-Jack I, Martinez P, Yeap BY, Ambrogio C, Ferris LA, Lydon C, Nguyen T, Jessop NA, Iafrate AJ, Johnson BE. Impact of BRAF mutation class on disease characteristics and clinical outcomes in BRAF-mutant lung cancer. Clin Cancer Res, 2019, 25(1): 158-165

[31]

Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers—biology, diagnostics and therapeutics. Nat Rev Clin Oncol, 2021, 18(1): 35-55

[32]

Schubart C, Stöhr R, Tögel L, Fuchs F, Sirbu H, Seitz G, Seggewiss-Bernhardt R, Leistner R, Sterlacci W, Vieth M. Met amplification in non-small cell lung cancer (Nsclc)—a consecutive evaluation using next-generation sequencing (ngs) in a real-world setting. Cancers (Basel), 2021, 13(19 5023

[33]

Boden E, Svereus F, Olm F, Lindstedt S. A systematic review of mesenchymal epithelial transition factor (MET) and its impact in the development and treatment of non-small-cell lung cancer. Cancers (Basel), 2023, 15(15 3827

[34]

Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. BioMed Res Int, 2011, 2011(1 583929

[35]

Guimaraes DP, Hainaut P. TP53: a key gene in human cancer. Biochimie, 2002, 84(1): 83-93

[36]

Melosky B, Kambartel K, Haentschel M, Bennetts M, Nickens DJ, Brinkmann J, Kayser A, Moran M, Cappuzzo F. Worldwide prevalence of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. Mol Diagn Ther, 2022, 26(1): 7-18

[37]

Prabhakar CN. Epidermal growth factor receptor in non-small cell lung cancer. Translational Lung Cancer Research, 2015, 4(2): 110

[38]

Zhang Y-L, Yuan J-Q, Wang K-F, Fu X-H, Han X-R, Threapleton D, Yang Z-Y, Mao C, Tang J-L. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget, 2016, 7(4878985

[39]

Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res, 2013, 19(82240-2247

[40]

Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009, 361(10): 947-957

[41]

Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med, 2018, 378(2): 113-125

[42]

Planchard D, Popat ST, Kerr K, Novello S, Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annal Oncol. 2018;29:iv192–iv237.

[43]

Skoulidis F, Li BT. Sotorasib for lung cancers with KRAS p. G12C mutation. N Engl J Med, 2021, 384(25): 2371-2381

[44]

Jänne PA, Riely GJ, Gadgeel SM, Heist RS, Ou S-HI, Pacheco JM, Johnson ML, Sabari JK, Leventakos K, Yau E. Adagrasib in non–small-cell lung cancer harboring a KRASG12C mutation. N Engl J Med, 2022, 387(2): 120-131

[45]

Camidge DR, Kim HR, Ahn M-J, Yang JC-H, Han J-Y, Lee J-S, Hochmair MJ, Li JY-C, Chang G-C, Lee KH. Brigatinib versus crizotinib in ALK-positive non–small-cell lung cancer. N Engl J Med, 2018, 379(21): 2027-2039

[46]

Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, Ou S-HI, Pérol M, Dziadziuszko R, Rosell R. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med, 2017, 377(9): 829-838

[47]

Shaw AT, Solomon BJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med, 2015, 372(7): 683-684

[48]

D’Angelo A, Sobhani N, Chapman R, Bagby S, Bortoletti C, Traversini M, Ferrari K, Voltolini L, Darlow J, Roviello G. Focus on ROS1-positive non-small cell lung cancer (NSCLC): crizotinib, resistance mechanisms and the newer generation of targeted therapies. Cancers, 2020

[49]

Bebb D G, Agulnik J, Albadine R, et al. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: a Canadian perspective. Curr Oncol. 2019;26(4):e551-e7.

[50]

Sethi S, Ali S, Philip PA, Sarkar FH. Clinical advances in molecular biomarkers for cancer diagnosis and therapy. Int J Mol Sci, 2013, 14(7): 14771-14784

[51]

Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, Merker JD, Goldfeder RL, Enns GM, David SP. Clinical interpretation and implications of whole-genome sequencing. JAMA, 2014, 311(10): 1035-1045

[52]

Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet, 2014, 59(1): 5-15

[53]

Fernandes MGO, Jacob M, Martins N, Moura CS, Guimarães S, Reis JP, Justino A, Pina MJ, Cirnes L, Sousa C. Targeted gene next-generation sequencing panel in patients with advanced lung adenocarcinoma: paving the way for clinical implementation. Cancers, 2019, 11(9): 1229

[54]

Jalali M, Zaborowska J, Jalali M. Chapter 1 - The Polymerase Chain Reaction: PCR, qPCR, and RT-PCR. In: M. Jalali, F. Y. L. Saldanha and M. Jalali, editors. Basic Science Methods for Clinical Researchers. Boston: Academic Press, 2017:1-18.

[55]

Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, Matushek PIV, Legator M, Jacobson K, Dalton SR. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol, 2009, 33(81146-1156

[56]

Dunstan RW, Wharton KA, Quigley C, Lowe A. The use of immunohistochemistry for biomarker assessment—can it compete with other technologies?. Toxicol Pathol, 2011, 39(6): 988-1002

[57]

Ahn S-J, Choi C, Choi Y-D, Kim Y-C, Kim K-S, Oh I-J, Ban H-J, Yoon M-S, Nam T-K, Jeong J-U. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res, 2014, 34(9): 4939-4948

[58]

Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Pontén F, König A, Fernandes O, Karlsson M, Helenius G, Karlsson C, Rahnenführer J, Hengstler JG, Micke P. Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res, 2013, 19(1): 194-204

[59]

Saji H, Tsuboi M, Shimada Y, Kato Y, Hamanaka W, Kudo Y, Yoshida K, Matsubayashi J, Usuda J, Ohira T. Gene expression profiling and molecular pathway analysis for the identification of early-stage lung adenocarcinoma patients at risk for early recurrence. Oncol Rep, 2013, 29(5): 1902-1906

[60]

Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, Tononi P, Pattini P, Moruzzi S, Campagnaro T. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics, 2015, 7: 1-13

[61]

Cher ML, Macgrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes Cancer, 1994, 11(3): 153-162

[62]

Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov, 2014, 4(6): 650-661

[63]

Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, Yelensky R. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol, 2013, 31(11): 1023-1031

[64]

Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer. J Thorac Oncol, 2018, 13(3): 323-358

[65]

Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, Lew M, Pantelas J, Ramalingam SS, Reck M, Saqi A, Simoff M, Singh N, Sundaram B. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the. J Clin Oncol, 2018, 36(9): 911-919

[66]

Shen C-I, Chiang C-L, Shiao T-H, Luo Y-H, Chao H-S, Huang H-C, Chiu C-H. Real-world evidence of the intrinsic limitations of PCR-based EGFR mutation assay in non-small cell lung cancer. Sci Rep, 2022, 12(1 13566

[67]

Williamson DFK, Marris SRN, Rojas-Rudilla V, Bruce JL, Paweletz CP, Oxnard GR, Sholl LM, Dong F. Detection of EGFR mutations in non-small cell lung cancer by droplet digital PCR. PLoS ONE, 2022, 17(2 e0264201

[68]

Heeke S, Benzaquen J, Hofman V, Ilié M, Allegra M, Long-Mira E, Lassalle S, Tanga V, Salacroup C, Bonnetaud C. Critical assessment in routine clinical practice of liquid biopsy for EGFR status testing in non–small-cell lung cancer: a single-laboratory experience (LPCE, Nice, France). Clin Lung Cancer, 2020, 21(1): 56-65

[69]

Asano H, Toyooka S, Tokumo M, Ichimura K, Aoe K, Ito S, Tsukuda K, Ouchida M, Aoe M, Katayama H, Hiraki A, Sugi K, Kiura K, Date H, Shimizu N. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res, 2006, 12(1): 43-48

[70]

Riudavets M, Lamberts V, Vasseur D, Auclin E, Aldea M, Jovelet C, Naltet C, Lavaud P, Gazzah A, Aboubakar F. Clinical utility and outcomes impact of crystal digital PCR of sensitizing and resistance EGFR mutations in patients with advanced non-small cell lung cancer. Clin Lung Cancer, 2022, 23(6): e377-e383

[71]

Cheng Y-W, Stefaniuk C, Jakubowski MA. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: instructive case analyses. Respir Med Case Rep, 2019, 28100901

[72]

Rogers T-M, Russell PA, Wright G, Wainer Z, Pang J-M, Henricksen LA, Singh S, Stanislaw S, Grille J, Roberts E. Comparison of methods in the detection of ALK and ROS1 rearrangements in lung cancer. J Thorac Oncol, 2015, 10(4): 611-618

[73]

Camidge DR, Kono SA, Flacco A, Tan A-C, Doebele RC, Zhou Q, Crino L, Franklin WA, Varella-Garcia M. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res, 2010, 16(22): 5581-5590

[74]

Varella-Garcia M. Stratification of non-small cell lung cancer patients for therapy with epidermal growth factor receptor inhibitors: the EGFR fluorescence in situ hybridization assay. Diagn Pathol, 2006, 1(1): 19

[75]

Kamal KM, Ghazali AR, Ab Mutalib NS, Abu N, Chua EW, Masre SF. The role of DNA methylation and DNA methyltransferases (DNMTs) as potential biomarker and therapeutic target in non-small cell lung cancer (NSCLC). Heliyon. 2024;10(19).

[76]

Siddiqui AS. DNA Hypermethylation Profile of Multiple Genes involved in Bladder Cancer among Saudi Population. Saudi Arabia: Alfaisal University. 2017.

[77]

Fehrenbach U, Kayser G. Epigenetics in lung cancer: What do DNA-methyltransferases do? Diagnostic Pathology [Internet]. 2017;3(1):1–23. https://doi.org/10.17629/www.diagnosticpathology.eu-2017-3:250.

[78]

Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics, 2009, 1(2239-259

[79]

Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics, 2016, 15(6): 443-453

[80]

Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y, Cui H. Epigenetic modification regulates tumor progression and metastasis through EMT. Int J Oncol, 2022, 60(6): 1-17

[81]

Dietz S, Lifshitz A, Kazdal D, Harms A, Endris V, Winter H, Stenzinger A, Warth A, Sill M, Tanay A. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas. Int J Cancer, 2019, 144(5): 1061-1072

[82]

Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics, 2022, 14(1): 118

[83]

Wittenberger T, Sleigh S, Reisel D, Zikan M, Wahl B, Alunni-Fabbroni M, Jones A, Evans I, Koch J, Paprotka T. DNA methylation markers for early detection of women’s cancer: promise and challenges. Epigenomics, 2014, 6(3311-327

[84]

Nunes SIP. Early detection of the three major primary cancers in women by cell-free DNA methylation in liquid biopsies. Portugal: Universidade do Porto. 2016.

[85]

Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene, 2002, 21(35): 5450-5461

[86]

Liouta G, Adamaki M, Tsintarakis A, Zoumpourlis P, Liouta A, Agelaki S, Zoumpourlis V. DNA methylation as a diagnostic, prognostic, and predictive biomarker in head and neck cancer. Int J Mol Sci, 2023, 24(3): 2996

[87]

Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet, 2010, 70: 57-85

[88]

Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, Khochbin S, Gazzeri S. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non–small cell lung cancer. Clin Cancer Res, 2008, 14(227237-7245

[89]

Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, Wang Q, Chia D, Goodglick L, Kurdistani SK. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol, 2009, 174(5): 1619-1628

[90]

Barlési F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P, Kruyt FAE, Rodriguez JA. Global histone modifications predict prognosis of resected non–small-cell lung cancer. J Clin Oncol, 2007, 25(28): 4358-4364

[91]

Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Kiriyama M, Fukai I, Yamakawa Y, Fujii Y. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer, 2004, 46(2): 171-178

[92]

Bartling B, Hofmann H-S, Boettger T, Hansen G, Burdach S, Silber R-E, Simm A. Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer, 2005, 49(2): 145-154

[93]

Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Mitsui M, Motoyama S, Ogawa J. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer, 2011, 74(2): 300-304

[94]

Stojanović D, Nikić D, Lazarević K. The level of nickel in smoker’s blood and urine. Cent Eur J Public Health, 2004, 12(4): 187-189

[95]

Zhou X, Li Q, Arita A, Sun H, Costa M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol, 2009, 236(1): 78-84

[96]

Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet, 2014

[97]

Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castaños-Vélez E, Blumenstein BA, Rösch T, Osborn N, Snover D, Day RW, Ransohoff DF for the PRESEPT Clinical Study Steering Committee, I. and S. T.. Prospective evaluation of methylated <em>SEPT9</em> in plasma for detection of asymptomatic colorectal cancer. Gut, 2014, 63(2): 317 LP-325

[98]

Song L, Jia J, Peng X, Xiao W, Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: a meta-analysis. Sci Rep, 2017, 7(1): 3032

[99]

Wielscher M, Vierlinger K, Kegler U, Ziesche R, Gsur A, Weinhäusel A. Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine, 2015, 2(8929-936

[100]

Zeng T, Huang Z, Yu X, Zheng L, Liu T, Tian B, Xiao S, Huang J. Combining methylated SDC2 test in stool DNA, fecal immunochemical test, and tumor markers improves early detection of colorectal neoplasms. Front Oncol, 2023

[101]

Moran S, Martínez-Cardús A, Sayols S, Musulén E, Balañá C, Estival-Gonzalez A, Moutinho C, Heyn H, Diaz-Lagares A, de Moura MC. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol, 2016, 17(10): 1386-1395

[102]

Hariharan R, Jenkins M. Utility of the methylated SEPT9 test for the early detection of colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy. BMJ Open Gastroenterol. 2020;7(1):e000355.

[103]

Rosas-Alonso R, Colmenarejo-Fernandez J, Pernia O, et al. Clinical validation of a novel quantitative assay for the detection of MGMT methylation in glioblastoma patients. Clin Epigenetics. 2021;13(1):52.

[104]

de Groot J S, Pan X, Meeldijk J, et al. Validation of DNA promoter hypermethylation biomarkers in breast cancer--a short report. Cell Oncol (Dordr). 2014;37(4):297–303.

[105]

Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet, 2016, 48(6): 607-616

[106]

Hsu M-T, Wang Y-K, Tseng YJ. Exosomal proteins and lipids as potential biomarkers for lung cancer diagnosis, prognosis, and treatment. Cancers (Basel), 2022, 14(3): 732

[107]

Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer, 2012, 76(2138-143

[108]

Owens DW, Lane EB. The quest for the function of simple epithelial keratins. BioEssays, 2003, 25(8): 748-758

[109]

Wieskopf B, Demangeat C, Purohit A, Stenger R, Gries P, Kreisman H, Quoix E. Cyfra 21–1 as a biologic marker of non-small cell lung cancer: evaluation of sensitivity, specificity, and prognostic role. Chest, 1995, 108(1): 163-169

[110]

Monstein H-J, Grahn N, Truedsson M, Ohlsson B. Progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA expression in non-tumor tissues of the human gastrointestinal tract. World J Gastroenterol: WJG, 2006, 12(16): 2574

[111]

Cavalieri S, Nichetti F, Morelli D, de Braud F, Martinetti A, Sottotetti E, Dotti K, Prisciandaro M, Corti F, Platania M. Pro-GRP in small cell lung cancer. Ann Oncol, 2017, 28 ii18

[112]

Zhu H. Squamous cell carcinoma antigen: clinical application and research status. Diagnostics, 2022, 12(51065

[113]

Kagohashi K, Satoh H, Kurishima K, Kadono K, Ishikawa H, Ohtsuka M, Sekizawa K. Squamous cell carcinoma antigen in lung cancer and nonmalignant respiratory diseases. Lung, 2008, 186: 323-326

[114]

Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a biomarker: Biochemical and clinical aspects. Advances in Experimental Medicine and Biology [Internet]. 2015;125–43. https://doi.org/10.1007/978-94-017-7215-0_9.

[115]

Bonner JA, Sloan JA, Rowland KMJr, Klee GG, Kugler JW, Mailliard JA, Wiesenfeld M, Krook JE, Maksymiuk AW, Shaw EG, Marks RS, Perez EA. Significance of Neuron-specific Enolase Levels before and during Therapy for Small Cell Lung Cancer1. Clin Cancer Res, 2000, 6(2597-601

[116]

Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int, 2014, 2014(1852748

[117]

Li BT, Smit EF, Goto Y, et al.. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N Engl J Med, 2022, 386(3): 241-51

[118]

AstraZeneca PLC. Enhertu approved in the US as first HER2-directed therapy for patients with HER2-low or HER2-ultralow metastatic breast cancer following disease progression after one or more endocrine therapies. 2025. https://www.astrazeneca.com/media-centre/press-releases/2025/enhertu-approved-in-us-for-breast-cancer-post-et.html.

[119]

Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006, 12(18): 5268-5272

[120]

Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VA. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res, 2006, 12(3): 839-844

[121]

Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer, 2018, 17(1 30

[122]

Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, Gadgeel SM, Cheema P, Pavlakis N, de Marinis F. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non–small cell lung cancer in the global phase III ALEX study. J Thorac Oncol, 2019, 14(7): 1233-1243

[123]

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3): 4-10

[124]

Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun, 2005, 333(2): 328-335

[125]

Winstead E. Dabrafenib–Trametinib Combination Approved for Solid Tumors with BRAF Mutations. 2022. https://www.cancer.gov/news-events/cancer-currents-blog/2022/fda-dabrafenib-trametinib-braf-solid-tumors?utm_source=chatgpt.com.

[126]

Dall’Olio FG, Abbati F, Facchinetti F, Massucci M, Melotti B, Squadrilli A, Buti S, Formica F, Tiseo M, Ardizzoni A. CEA and CYFRA 21–1 as prognostic biomarker and as a tool for treatment monitoring in advanced NSCLC treated with immune checkpoint inhibitors. Ther Adv Med Oncol, 2020, 12 1758835920952994

[127]

Moro D, Villemain D, Vuillez JP, Delord CA, Brambilla C. CEA, CYFRA21-1 and SCC in non-small cell lung cancer. Lung Cancer, 1995, 13(2): 169-176

[128]

Chen F, Wang X-Y, Han X-H, Wang H, Qi J. Diagnostic value of Cyfra21-1, SCC and CEA for differentiation of early-stage NSCLC from benign lung disease. Int J Clin Exp Med, 2015, 8(7): 11295

[129]

Molina R, Filella X, Auge JM, Fuentes R, Bover I, Rifa J, Moreno V, Canals E, Viñolas N, Marquez A. Tumor markers (CEA, CA 125, CYFRA 21–1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis: comparison with the main clinical and pathological prognostic factors. Tumor Biol, 2003, 24(4209-218

[130]

Wang R, Wang G, Zhang N, Li X, Liu Y. Clinical evaluation and cost-effectiveness analysis of serum tumor markers in lung cancer. BioMed Res Int, 2013, 2013(1195692

[131]

Fu Y, Li D, Zhu Y, Yan S, Wang X, Lian Z, et al. Application Value of CYFRA21-1 Combined with NSE, CEA, and SCC-Ag in Lung Cancer. Clinical Laboratory [Internet]. 2024;70(04):641. https://doi.org/10.7754/clin.lab.2023.230662.

[132]

Sun A. Clinical role of serum tumor markers SCC, NSE, CA 125, CA 19–9, and CYFRA 21–1 in patients with lung cancer. Lab Med, 2023, 54(6): 638-645

[133]

Cheung CHY, Juan H-F. Quantitative proteomics in lung cancer. J Biomed Sci, 2017, 24(1): 37

[134]

Feng X, Wu WY-Y, Onwuka JU, Haider Z, Alcala K, Smith-Byrne K, Zahed H, Guida F, Wang R, Bassett JK, Stevens V, Wang Y, Weinstein S, Freedman ND, Chen C, Tinker L, Nøst TH, Koh W-P, Muller D, Colorado-Yohar SM, Tumino R, Hung RJ, Amos CI, Lin X, Zhang X, Arslan AA, Sánchez M-J, Sørgjerd EP, Severi G, Hveem K, Brennan P, Langhammer A, Milne RL, Yuan J-M, Melin B, Robbins HA, Johansson M. Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools. JNCI J Natl Cancer Inst, 2023, 115(91050-1059

[135]

Orive D, Echepare M, Bernasconi-Bisio F, Sanmamed MF, Pineda-Lucena A, de la Calle-Arroyo C, Detterbeck F, Hung RJ, Johansson M, Robbins HA, Seijo LM, Montuenga LM, Valencia K. Protein biomarkers in lung cancer screening: technical considerations and feasibility assessment. Arch Bronconeumol, 2024, 60: S67-S76

[136]

Ocak S, Chaurand P, Massion PP. Mass spectrometry–based proteomic profiling of lung cancer. Proc Am Thorac Soc, 2009, 6(2): 159-170

[137]

Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat, 2010, 4(4): 1797

[138]

Palmblad M, Ramström M, Bailey CG, McCutchen-Maloney SL, Bergquist J, Zeller LC. Protein identification by liquid chromatography–mass spectrometry using retention time prediction. J Chromatogr B, 2004, 803(1131-135

[139]

Shen J, Person MD, Zhu J, Abbruzzese JL, Li D. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res, 2004, 64(24): 9018-9026

[140]

Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, Shimada H, Ochiai T, Nomura F. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res, 2004, 10(6): 2007-2014

[141]

Dorri Y. Two-Dimensional Gel Electrophoresis: Vertical Isoelectric Focusing BT - Electrophoretic Separation of Proteins: Methods and Protocols. B. T. Kurien & R. H. Scofield (eds.). New York: Springer. 2019 pp. 291–302. https://doi.org/10.1007/978-1-4939-8793-1_25

[142]

Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ. An overview of technical considerations for western blotting applications to physiological research. Scand J Med Sci Sports, 2017, 27(1): 4-25

[143]

Anderson GJ, Cipolla CM, Kennedy RT. Western blotting using capillary electrophoresis. Analytical Chemistry, 2011, 83(4): 1350-1355

[144]

Ni D, Xu P, Gallagher S. Immunoblotting and immunodetection. Curr Protoc Cell Biol, 2017, 74(1): 2-6

[145]

Kurien BT, Scofield RH. Western blotting. Methods, 2006, 38(4): 283-293

[146]

Konstantinou GN. Enzyme-linked immunosorbent assay (ELISA). Food Allergens: Methods and Protocols. 2017. pp. 79–94.

[147]

Sule R, Rivera G, Gomes AV. Western blotting (immunoblotting): history, theory, uses, protocol and problems. Biotechniques, 2023, 75(3): 99-114

[148]

Hayrapetyan H, Tran T, Tellez-Corrales E, Madiraju C. Enzyme-Linked immunosorbent assay: types and applications. Methods in Molecular Biology [Internet]. 2023;1–17. https://doi.org/10.1007/978-1-0716-2903-1_1.

[149]

MacBeath G. Protein microarrays and proteomics. Nat Genet, 2002, 32(4): 526-532

[150]

Ramachandran N, Srivastava S, LaBaer J. Applications of protein microarrays for biomarker discovery. Proteomics-Clinical Applications, 2008, 2(10–11): 1444-1459

[151]

Ritzefeld M, Sewald N. Real-time analysis of specific protein-DNA interactions with surface plasmon resonance. J Amino Acids, 2012, 2012(1816032

[152]

Sasidevi S, Kumarganesh S, Saranya S, Thiyaneswaran B, Shree KVM, Martin Sagayam K, et al. Design of surface plasmon resonance (SPR) sensors for highly sensitive biomolecular detection in cancer diagnostics. Plasmonics. 2025;20(2):677–89.

[153]

Douzi B. Protein–Protein interactions: surface plasmon resonance. Methods in Molecular Biology [Internet]. 2017;257–75. https://doi.org/10.1007/978-1-4939-7033-9_21.

[154]

Kuo Y-C, Ho JH, Yen T-J, Chen H-F, Lee OK-S. Development of a surface plasmon resonance biosensor for real-time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS ONE, 2011, 6(7 e22382

[155]

Sparks RP, Jenkins JL, Fratti R. Use of surface plasmon resonance (SPR) to determine binding affinities and kinetic parameters between components important in fusion machinery. Methods in Molecular Biology [Internet]. 2018;199–210. https://doi.org/10.1007/978-1-4939-8760-3_12.

[156]

Del Vecchio K, Stahelin RV. Using surface plasmon resonance to quantitatively assess Lipid–Protein interactions. Methods in Molecular Biology [Internet]. 2015;141–53. https://doi.org/10.1007/978-1-4939-3170-5_12.

[157]

De Matos LL, Trufelli DC, De Matos MGL, da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights, 2010, 5 BMI-S2185

[158]

Cregger M, Berger AJ, Rimm DL. Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med, 2006, 130(7): 1026-1030

[159]

Kumar V, Ray S, Ghantasala S, Srivastava S. An integrated quantitative proteomics workflow for cancer biomarker discovery and validation in plasma. Front Oncol, 2020, 10 543997

[160]

Kuo K-K, Kuo C-J, Chiu C-Y, Liang S-S, Huang C-H, Chi S-W, Tsai K-B, Chen C-Y, Hsi E, Cheng K-H. Quantitative proteomic analysis of differentially expressed protein profiles involved in pancreatic ductal adenocarcinoma. Pancreas, 2016, 45(1): 71-83

[161]

Danhier P, Bański P, Payen VL, Grasso D, Ippolito L, Sonveaux P, Porporato PE. Cancer metabolism in space and time: beyond the Warburg effect. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2017, 1858(8): 556-572

[162]

Ancey P, Contat C, Meylan E. Glucose transporters in cancer–from tumor cells to the tumor microenvironment. FEBS J, 2018, 285(16): 2926-2943

[163]

Zhou L, Zhang Q, Zhu Q, Zhan Y, Li Y, Huang X. Role and therapeutic targeting of glutamine metabolism in non-small cell lung cancer. Oncol Lett, 2023, 25(4): 1-12

[164]

Cao D, Yang J, Deng Y, Su M, Wang Y, Feng X, Xiong Y, Bai E, Duan Y, Huang Y. Discovery of a mammalian FASN inhibitor against xenografts of non-small cell lung cancer and melanoma. Signal Transduct Target Ther, 2022, 7(1 273

[165]

Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang X-Y, Fang X. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett, 2018, 435: 92-100

[166]

Todisco S, Convertini P, Iacobazzi V, Infantino V. TCA cycle rewiring as emerging metabolic signature of hepatocellular carcinoma. Cancers (Basel), 2019, 12(1): 68

[167]

Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one-carbon metabolism in cancer. Int J Oncol, 2020, 58(2158-170

[168]

D’Aniello C, Patriarca EJ, Phang JM, Minchiotti G. Proline metabolism in tumor growth and metastatic progression. Front Oncol, 2020, 10: 776

[169]

George S, Abrahamse H. Redox potential of antioxidants in cancer progression and prevention. Antioxidants, 2020, 9(11 1156

[170]

Hsu C-C, Tseng L-M, Lee H-C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood), 2016, 241(12): 1281-1295

[171]

Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-inducible factors and cancer. Curr Sleep Med Rep, 2017, 3: 1-10

[172]

Lyons CL, Roche HM. Nutritional modulation of AMPK-impact upon metabolic-inflammation. Int J Mol Sci, 2018, 19(103092

[173]

Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer, 2019, 18: 1-13

[174]

Borg M, Wen SW, Andersen RF, Timm S, Hansen TF, Hilberg O. Methylated circulating tumor DNA in blood as a tool for diagnosing lung cancer: a systematic review and meta-analysis. Cancers, 2023

[175]

Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem, 2015, 61(1112-123

[176]

Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol, 2018, 15(9): 577-586

[177]

Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, Yang M, Li L, Ping W, Shen H. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics, 2019, 9(7): 2056

[178]

Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics, 2017, 15(259-72

[179]

Sanz-Garcia E, Zhao E, Bratman SV, Siu LL. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: current research, opportunities, and challenges. Sci Adv, 2022, 8(4 eabi8618

[180]

Gale D, Heider K, Ruiz-Valdepenas A, Hackinger S, Perry M, Marsico G, Rundell V, Wulff J, Sharma G, Knock H. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol, 2022, 33(5): 500-510

[181]

Oellerich M, Schütz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, Walson PD. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci, 2017, 54(3): 205-218

[182]

Küçük BN, Yilmaz EG, Aslan Y, Erdem O, Inci F. Shedding light on cellular secrets: a review of advanced optical biosensing techniques for detecting extracellular vesicles with a special focus on cancer diagnosis. ACS Appl Bio Mater, 2024, 7(9): 5841-5860

[183]

Tellez-Gabriel M, Knutsen E, Perander M. Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. Int J Mol Sci, 2020, 21(24 9457

[184]

Makler A, Asghar W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn, 2020, 20(4): 387-400

[185]

Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra A-B, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther, 2024, 9(1 27

[186]

Samuel G, Crow J, Klein JB, Merchant ML, Nissen E, Koestler DC, Laurence K, Liang X, Neville K, Staggs V. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget, 2020, 11(31): 2995

[187]

Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer, 2022, 21(156

[188]

Liu C, Kannisto E, Yu G, Yang Y, Reid ME, Patnaik SK, Wu Y. Non-invasive detection of exosomal microRNAs via tethered cationic lipoplex nanoparticles (tCLN) biochip for lung cancer early detection. Front Genet, 2020

[189]

Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med, 2020, 12(1 31

[190]

Lawrence R, Watters M, Davies CR, Pantel K, Lu Y-J. Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol, 2023, 20(7487-500

[191]

Salehi M, Lavasani ZM, Keshavarz Alikhani H, Shokouhian B, Hassan M, Najimi M, Vosough M. Circulating tumor cells as a promising tool for early detection of hepatocellular carcinoma. Cells, 2023

[192]

Maheswaran S, Haber DA. Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev, 2010, 20(1): 96-99

[193]

Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther, 2021, 6(1): 404

[194]

Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine. 2004;351(8):781–791. https://doi.org/10.1056/nejmoa040766.

[195]

Franken B, de Groot MR, Mastboom WJB, Vermes I, van der Palen J, Tibbe AGJ, Terstappen LWMM. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res, 2012, 14(5R133

[196]

Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol, 2021, 32(4466-477

[197]

Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in cancer progression and therapy resistance: molecular insights and therapeutic opportunities. Life (Basel), 2023

[198]

M Saini V, Oner E, Ward MP, Hurley S, Henderson BD, Lewis F, Finn SP, Fitzmaurice GJ, O’Leary JJ, O’Toole S, O’Driscoll L, Gately K. A comparative study of circulating tumor cell isolation and enumeration technologies in lung cancer. Mol Oncol. 2024. https://doi.org/10.1002/1878-0261.13705.

[199]

Shao H, Chung J, Issadore D. Diagnostic technologies for circulating tumour cells and exosomes. Biosci Rep, 2016, 36(1 e00292

[200]

Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762

[201]

Li S, Zhou B. A review of radiomics and genomics applications in cancers: the way towards precision medicine. Radiat Oncol. 2022;17(1):217.

[202]

Zhang W, Guo Y, Jin Q. Radiomics and its feature selection: a review. Symmetry, 2023

[203]

Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung Cancer Res, 2017, 6(1): 86

[204]

Choi W, Oh JH, Riyahi S, Liu C-J, Jiang F, Chen W, White C, Rimner A, Mechalakos JG, Deasy JO, Lu W. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys, 2018, 45(41537-1549

[205]

Selvam M, Chandrasekharan A, Sadanandan A, Anand VK, Murali A, Krishnamurthi G. Radiomics as a non-invasive adjunct to chest CT in distinguishing benign and malignant lung nodules. Sci Rep, 2023, 13(1 19062

[206]

Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging, 2021, 48: 3961-3974

[207]

Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat, 2018, 17: 1533033818782788

[208]

Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation?. Med Oncol, 2020, 37: 1-18

[209]

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446

[210]

Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006

[211]

Hatt M, Tixier F, Visvikis D, Le Rest CC. Radiomics in PET/CT: more than meets the eye?. J Nucl Med, 2017, 58(3): 365-366

[212]

Aide N, Hicks RJ, Le Tourneau C, Lheureux S, Fanti S, Lopci E. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging, 2019, 46(1238-250

[213]

Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol, 2012, 6(2): 140-146

[214]

Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys Med, 2017, 38: 122-139

[215]

Portnow LH, Kochkodan-Self JM, Maduram A, Barrios M, Onken AM, Hong X, Mittendorf EA, Giess CS, Chikarmane SA. Multimodality imaging review of HER2-positive breast cancer and response to neoadjuvant chemotherapy. Radiographics, 2023, 43(2 e220103

[216]

Oh SW, Cheon GJ. Prostate-specific membrane antigen PET imaging in prostate cancer: opportunities and challenges. Korean J Radiol, 2018, 19(5): 819-831

[217]

Torigian DA, Huang SS, Houseni M, Alavi A. Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J Clin, 2007, 57(4): 206-224

[218]

Mazzone PJ, Sears CR, Arenberg DA, Gaga M, Gould MK, Massion PP, Nair VS, Powell CA, Silvestri GA, Vachani A. Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society policy statement. Am J Respir Crit Care Med, 2017, 196(7): e15-e29

[219]

Mohamed E, García Martínez DJ, Hosseini MS, et al. Identification of biomarkers for the early detection of non-small cell lung cancer: a systematic review and meta-analysis. Carcinogenesis. 2024;45(1-2):1–22.

[220]

Rodríguez M, Ajona D, Seijo LM, et al. Molecular biomarkers in early stage lung cancer. Transl Lung Cancer Res. 2021;10(2):1165–85.

[221]

Hassanein M, Callison JC, Callaway-Lane C, et al. The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila). 2012;5(8):992–1006.

[222]

Hirsch FR, Merrick DT, Franklin WA. Role of biomarkers for early detection of lung cancer and chemoprevention. Eur Respir J. 2002;19(6):1151–8.

[223]

Yong E. Cancer biomarkers: Written in blood. Nature. 2014;511(7511):524–6.

[224]

Brennan DJ, O'Connor DP, Rexhepaj E, et al. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nature Reviews Cancer. 2010;10(9):605–17.

[225]

Pantel AR, Mankoff DA. Molecular imaging to guide systemic cancer therapy: Illustrative examples of PET imaging cancer biomarkers. Cancer Lett. 2017;387(25–31).

[226]

Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92.

[227]

Bettegowda C, Sausen M, Leary RJ, et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci Transl Med. 2014;6(224):224ra24-ra24.

[228]

Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1(Suppl 1):122s-50s.

[229]

Kirienko M, Cozzi L, Antunovic L, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45(2):207–17.

[230]

Kong S L, Liu X, Tan S J, et al. Complementary Sequential Circulating Tumor Cell (CTC) and Cell-Free Tumor DNA (ctDNA) Profiling Reveals Metastatic Heterogeneity and Genomic Changes in Lung Cancer and Breast Cancer. Front Oncol. 2021;11(698551).

[231]

Moon SM, Kim JH, Kim SK, et al. Clinical Utility of Combined Circulating Tumor Cell and Circulating Tumor DNA Assays for Diagnosis of Primary Lung Cancer. Anticancer Res. 2020;40(6):3435–44.

[232]

Gerratana L, Davis AA, Foffano L, et al. Integrating machine learning-predicted circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in metastatic breast cancer: A proof of principle study on endocrine resistance profiling. Cancer Lett. 2025;609(217325).

[233]

James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

[234]

Fountzilas E, Pearce T, Baysal MA, et al. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med. 2025;8(1):75.

[235]

Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022;40(10):1095–110.

[236]

Xu X, Li J, Zhu Z, et al. A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis. Bioengineering (Basel). 2024;11(3).

[237]

Dietel M, Bubendorf L, Dingemans AM, et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group. Thorax. 2016;71(2):177–84.

[238]

von Gall C, Maniawski P, Verzijlbergen F, et al. Saving costs in cancer patient management through molecular imaging. Eur J Nucl Med Mol Imaging. 2017;44(13):2153–7.

[239]

Paverd H, Zormpas-Petridis K, Clayton H, et al. Radiology and multi-scale data integration for precision oncology. NPJ Precis Oncol. 2024;8(1):158.

[240]

American Lung Association. New Report: Lung Cancer Survival Rate Improves, But Gaps in Biomarker Testing and Lack of Screening Hinder Progress. 2024. https://www.lung.org/media/press-releases/state-of-lung-cancer-2024.

[241]

Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725–37.

[242]

Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.

[243]

Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6.

[244]

Gillies RJ, Schabath MB. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2556–67.

[245]

Saha S, Araf Y, Promon SK. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis. J Egypt Natl Canc Inst. 2022;34(1):8

[246]

Lv X, Yang L, Xie Y, et al. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol. 2024;12(1397788).

[247]

Uhlyarik A, Piurko V, Papai Z, et al. EGFR Protein Expression in KRAS Wild-Type Metastatic Colorectal Cancer Is Another Negative Predictive Factor of the Cetuximab Therapy. Cancers (Basel). 2020;12(3).

[248]

ScienceDaily. Molecular subtypes and genetic alterations may determine response to lung cancer therapy. 2012. https://www.sciencedaily.com/releases/2012/05/120511133733.htm.

[249]

Dong A, Zhao Y, Li Z, et al. PD-L1 versus tumor mutation burden: Which is the better immunotherapy biomarker in advanced non-small cell lung cancer J Gene Med. 2021;23(2):e3294.

[250]

Chmielewska I, Stencel K, Kalinka E, et al. Neoadjuvant and Adjuvant Immunotherapy in Non-Small Cell Lung Cancer-Clinical Trials Experience. Cancers (Basel). 2021;13(20).

[251]

Liu H, Liu M. Editorial: Novel biomarkers for potential clinical applications in lung cancer. Front Oncol. 2024;14(1481799).

[252]

Ou FS, Michiels S, Shyr Y, et al. Biomarker Discovery and Validation: Statistical Considerations. J Thorac Oncol. 2021;16(4):537–45.

[253]

Safari F, Kehelpannala C, Safarchi A, et al. Biomarker Reproducibility Challenge: A Review of Non-Nucleotide Biomarker Discovery Protocols from Body Fluids in Breast Cancer Diagnosis. Cancers (Basel). 2023;15(10).

[254]

Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093–104.

[255]

Park S, Kim TM, Han JY, et al. Phase III, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients With EGFR- or ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04). J Clin Oncol. 2024;42(11):1241–51.

[256]

Nogami N, Barlesi F, Socinski MA, et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups With EGFR Mutations or Metastases in the Liver or Brain. J Thorac Oncol. 2022;17(2):309–23.

[257]

Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–8.

[258]

Peters S, Dziadziuszko R, Morabito A, et al. Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-based tumor mutational burden: primary analysis of BFAST cohort C randomized phase 3 trial. Nat Med. 2022;28(9):1831–9.

[259]

Kim ES, Velcheti V, Mekhail T, et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial. Nat Med. 2022;28(5):939–45.

[260]

Gregorc V, Novello S, Lazzari C, et al. Predictive value of a proteomic signature in patients with non-small-cell lung cancer treated with second-line erlotinib or chemotherapy (PROSE): a biomarker-stratified, randomised phase 3 trial. Lancet Oncol. 2014;15(7):713–21.

[261]

Gadgeel S, Goss G, Soria JC, et al. Evaluation of the VeriStrat(®) serum protein test in patients with advanced squamous cell carcinoma of the lung treated with second-line afatinib or erlotinib in the phase III LUX-Lung 8 study. Lung Cancer. 2017;109(101–8).

[262]

Zhang L, Zheng J, Bux RA, et al. Clinical Validation of Plasma Metabolite Markers for Early Lung Cancer Detection. Int J Mol Sci. 2025;26(10).

[263]

Zhang L, Pu D, Liu D, et al. Identification and validation of novel circulating biomarkers for early diagnosis of lung cancer. Lung Cancer. 2019;135(130–7.

[264]

Booz Allen H. Cost drivers in the development and validation of biomarkers used in drug development. 2018.

[265]

Coulthard E, Hosseini A A. Blood biomarkers: ready for clinical practice J Neurol Neurosurg Psychiatry. 2023;94(6):409–10.

[266]

U. S. Food and Drug Administration. Biomarker Qualification Program. 2025. https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/biomarker-qualification-program.

[267]

Medical Atum. Global Regulation of Biomarkers: A Barrier or a Catalyst for Medical Innovation 2023. https://www.atummedicalresearch.com/global-regulation-of-biomarkers-a-barrier-or-a-catalyst-for-medical-innovation.

[268]

American Cancer Society Cancer Action Network. Improving Access to Biomarker Testing—Advancing Precision Medicine in Cancer Care. 2020. https://www.fightcancer.org/sites/default/files/Improving%20Access%20to%20Biomarker%20Testing%20Executive%20Summary.pdf.

[269]

Singh S, Ananthakrishnan AN, Nguyen NH, et al. AGA Clinical Practice Guideline on the Role of Biomarkers for the Management of Ulcerative Colitis. Gastroenterology. 2023;164(3):344–72.

[270]

National Comprehensive Cancer Network. Development and Update of Guidelines. 2024. https://www.nccn.org/guidelines/guidelines-process/development-and-update-of-guidelines.

[271]

Snow S, Brezden-Masley C, Carter MD, et al. Barriers and Unequal Access to Timely Molecular Testing Results: Addressing the Inequities in Cancer Care Delays across Canada. Curr Oncol. 2024;31(3):1359–75.

[272]

Sadigh G, Goeckner HG, Kazerooni EA, et al. State legislative trends related to biomarker testing. Cancer. 2022;128(15):2865–70.

[273]

Lin GA, Coffman JM, Phillips KA. The State of State Biomarker Testing Insurance Coverage Laws. Jama. 2024;331(22):1885–6.

[274]

Hudson KL, Holohan MK, Collins FS. Keeping pace with the times--the Genetic Information Nondiscrimination Act of 2008. N Engl J Med. 2008;358(25):2661–3.

[275]

McGuire AL, Beskow LM. Informed consent in genomics and genetic research. Annu Rev Genomics Hum Genet. 2010;11(361–81).

[276]

Kho AN, Pacheco JA, Peissig PL, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Sci Transl Med. 2011;3(79):79re1.

[277]

Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13(6):395–405.

[278]

Lemke AA, Harris-Wai JN. Stakeholder engagement in policy development: challenges and opportunities for human genomics. Genet Med. 2015;17(12):949–57.

[279]

Khoury MJ, Gwinn M, Yoon PW, et al. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention Genet Med. 2007;9(10):665–74.

[280]

Veenstra DL, Roth JA, Garrison LP, Jr., et al. A formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. Genet Med. 2010;12(11):686–93.

[281]

Dancey JE, Bedard PL, Onetto N, et al. The genetic basis for cancer treatment decisions. Cell. 2012;148(3):409–20.

[282]

Zhang J, Wang T, Zhang Y, et al. Upregulation of serum miR-494 predicts poor prognosis in non-small cell lung cancer patients. Cancer Biomark. 2018;21(4):763–8.

[283]

Tang R, Liang L, Luo D, et al. Downregulation of MiR-30a is Associated with Poor Prognosis in Lung Cancer. Med Sci Monit. 2015;21(2514–20.

[284]

Jia Z, Zhang H, Ong CN, et al. Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins. ACS Omega. 2018;3(5):5131–40.

[285]

Long Y, Wang C, Wang T, et al. High performance exhaled breath biomarkers for diagnosis of lung cancer and potential biomarkers for classification of lung cancer. J Breath Res. 2021;15(1):016017.

[286]

Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.

[287]

Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

[288]

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

[289]

Marques L, Costa B, Pereira M, et al. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics. 2024;16(3).

[290]

Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42(60–88).

[291]

Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017;284(2):574–82.

[292]

Khadirnaikar S, Shukla S, Prasanna SRM. Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Sci Rep. 2023;13(1):4636.

[293]

Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.

[294]

Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385–9.

[295]

Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–59.

[296]

Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.

[297]

Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.

[298]

Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32.

[299]

Camacho DM, Collins KM, Powers RK, et al. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581–92.

[300]

Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13(8-17).

[301]

Tsangaris E, Edelen M, Means J, et al. User-centered design and agile development of a novel mobile health application and clinician dashboard to support the collection and reporting of patient-reported outcomes for breast cancer care. BMJ Surg Interv Health Technol. 2022;4(1):e000119.

[302]

Dorsey ER, Topol EJ. Telemedicine 2020 and the next decade. Lancet. 2020;395(10227):859.

[303]

Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

[304]

Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–50.

[305]

Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–80.

[306]

He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.

[307]

Shabani M, Marelli L. Re-identifiability of genomic data and the GDPR: Assessing the re-identifiability of genomic data in light of the EU General Data Protection Regulation. EMBO Rep. 2019;20(6).

[308]

Obermeyer Z, Powers B, Vogeli C, et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

[309]

Mehrabi N, Morstatter F, Saxena N, et al. A Survey on Bias and Fairness in Machine Learning. ACM Comput Surv. 2021;54(6):Article 115.

[310]

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.

[311]

Mulshine JL, Gierada DS, Armato SG, 3rd, et al. Role of the Quantitative Imaging Biomarker Alliance in optimizing CT for the evaluation of lung cancer screen-detected nodules. J Am Coll Radiol. 2015;12(4):390–5.

[312]

Yang M, Yu H, Feng H, et al. Enhancing the differential diagnosis of small pulmonary nodules: a comprehensive model integrating plasma methylation, protein biomarkers, and LDCT imaging features. J Transl Med. 2024;22(1):984.

[313]

Ostrin EJ, Sidransky D, Spira A, et al. Biomarkers for Lung Cancer Screening and Detection. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2411–5.

[314]

Wu JT, Wakelee HA, Han SS. Optimizing Lung Cancer Screening With Risk Prediction: Current Challenges and the Emerging Role of Biomarkers. J Clin Oncol. 2023;41(27):4341–7.

[315]

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478).

[316]

Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

[317]

Merker JD, Oxnard GR, Compton C, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018;36(16):1631–41.

[318]

Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10(3):297–308.

[319]

Minamoto T, Ougolkov AV, Mai M. Detection of oncogenes in the diagnosis of cancers with active oncogenic signaling. Expert Rev Mol Diagn. 2002;2(6):565–75.

[320]

Tenchov R, Sapra AK, Sasso J, et al. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol Transl Sci. 2024;7(3):586–613.

[321]

Crosby D, Bhatia S, Brindle KM, et al. Early detection of cancer. Science. 2022;375(6586):eaay9040.

[322]

Arenberg D. Integrated Biomarkers for Pulmonary Nodules: Proving What Is Possible. Am J Respir Crit Care Med. 2021;204(11):1247–8.

[323]

Patz EF, Jr., Campa MJ, Gottlin EB, et al. Biomarkers to help guide management of patients with pulmonary nodules. Am J Respir Crit Care Med. 2013;188(4):461–5.

[324]

Passaro A, Al Bakir M, Hamilton EG, et al. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell. 2024;187(7):1617–35.

[325]

American Cancer Society. Biomarker Tests and Cancer Treatment. 2025. https://www.cancer.org/cancer/diagnosis-staging/tests/biomarker-tests.html.

[326]

Bradley E. Incorporating biomarkers into clinical trial designs: points to consider. Nat Biotechnol. 2012;30(7):596–9.

[327]

Josh D. The Power of Real-World Data Analytics in Biomarker Discovery: A Game-Changer in Medical Research. 2024. https://oxfordglobal.com/precision-medicine/resources/real-world-data-analytics-in-biomarkers.

[328]

Cancercare. Employers’ Prescription for Employee Protection Toolkit: Best Practices for Biomarker Testing Coverage. 2023. https://www.cancercare.org/biomarkertoolkit.

[329]

Baron JM, Widatalla S, Gubens MA, et al. Real-World Biomarker Test Ordering Practices in Non-Small Cell Lung Cancer: Interphysician Variation and Association With Clinical Outcomes. JCO Precis Oncol. 2024;8(e2400039.

[330]

Davis KD, Aghaeepour N, Ahn AH, et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol. 2020;16(7):381–400.

[331]

Dobbin KK, Cesano A, Alvarez J, et al. Validation of biomarkers to predict response to immunotherapy in cancer: Volume II—clinical validation and regulatory considerations. J Immunother Cancer. 2016;4(77).

[332]

Sanjay ST, Fu G, Dou M, et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst. 2015;140(21):7062–81.

[333]

Rush AJ, Ibrahim HM. A Clinician's Perspective on Biomarkers. Focus (Am Psychiatr Publ). 2018;16(2):124–34.

[334]

Perlis R H. Translating biomarkers to clinical practice. Mol Psychiatry. 2011;16(11):1076–87.

RIGHTS & PERMISSIONS

The Author(s)

PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

/