On Warped Product Gradient Ricci-Harmonic Soliton

Elismar Batista , Levi Adriano , Willian Tokura

Chinese Annals of Mathematics, Series B ›› : 1 -16.

PDF
Chinese Annals of Mathematics, Series B ›› :1 -16. DOI: 10.1007/s11401-026-0017-8
Article
research-article

On Warped Product Gradient Ricci-Harmonic Soliton

Author information +
History +
PDF

Abstract

In this paper, the authors study gradient Ricci-Harmonic solitons on warped product manifolds. First, they prove triviality results for the potential and warping functions that reach a maximum or a minimum. In order to provide nontrivial examples, they consider the base and the fiber conformal to a semi-Euclidean space, which is invariant under the action of a translation group of co-dimension one. This approach allows them to produce infinitely many examples of geodesically complete semi-Riemannian Ricci-Harmonic solitons not present in the literature.

Keywords

Warped product / Gradient Ricci-Harmonic solitons / Semi-Riemannian metric / Group action / 58J60 / 53C25 / 53C21

Cite this article

Download citation ▾
Elismar Batista, Levi Adriano, Willian Tokura. On Warped Product Gradient Ricci-Harmonic Soliton. Chinese Annals of Mathematics, Series B 1-16 DOI:10.1007/s11401-026-0017-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besse A L. Einstein manifolds, 2008, Berlin, Springer-VerlagReprint of the 1987 edition

[2]

Bishop R L, O’Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc., 1969, 145: 1-49

[3]

Chen B-Y. Differential Geometry of Warped Product Manifolds and Submanifolds, 2017, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd.

[4]

Cheng L, Zhu A. On the extension of the harmonic Ricci flow. Geom. Dedicata, 2013, 164: 179-185

[5]

Dobarro F, Lami Dozo E. Scalar curvature and warped products of Riemann manifolds. Trans. Amer. Math. Soc., 1987, 303(1): 161-168

[6]

Eells JJr., Sampson J H. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 1964, 86: 109-160

[7]

Fernández-López M, García-Río E. A remark on compact Ricci solitons. Math. Ann., 2008, 340(4): 893-896

[8]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 1977, Berlin, Springer-Verlag

[9]

Guo H X, He T T. Harnack estimates for geometric flows, applications to Ricci flow coupled with harmonic map flow. Geom. Dedicata, 2014, 169: 411-418

[10]

Guo H X, Philipowski R, Thalmaier A. On gradient solitons of the Ricci-harmonic flow. Acta Math. Sin. (Engl. Ser.), 2015, 31(11): 1798-1804

[11]

Hamilton R S. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 1982, 17(2): 255-306

[12]

Ivey T. New examples of complete Ricci solitons. Proc. Amer. Math. Soc., 1994, 122(1): 241-245

[13]

Kim B H, Lee S D, Choi J H, Lee Y O. On warped product spaces with a certain Ricci condition. Bull. Korean Math. Soc., 2013, 50(5): 1683-1691

[14]

Kim D-S, Kim Y H. Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc., 2003, 131(8): 2573-2576

[15]

Lemes de Sousa M, Pina R. Gradient Ricci solitons with structure of warped product. Results in Mathematics, 2017, 71(3–4): 825-840

[16]

Li Y. Eigenvalues and entropies under the harmonic-Ricci flow. Pacific J. Math., 2014, 267(1): 141-184

[17]

Müller R. Monotone volume formulas for geometric flows. J. Reine Angew. Math., 2010, 643: 39-57

[18]

Müller R. Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4), 2012, 45(1): 101-142

[19]

Neto B L, Tenenblat K. On gradient Yamabe solitons conformal to a pseudo-Euclidian space. J. Geom. Phys., 2018, 123: 284-291

[20]

O’Neill B. Semi-Riemannian Geometry With Applications to Relativity, 1983, New York, Academic Press, Inc.

[21]

Perelman, G., The entropy formula for the Ricci flow and its geometric applications, 2002, arXiv: math/0211159.

[22]

Petersen P, Wylie W. On gradient Ricci solitons with symmetry. Proc. Amer. Math. Soc., 2009, 137(6): 2085-2092

[23]

Petersen P, Wylie W. Rigidity of gradient Ricci solitons. Pacific J. Math., 2009, 241(2): 329-345

[24]

Tokura W, Adriano L, Pina R, Barboza M. On warped product gradient Yamabe solitons. J. Math. Anal. Appl., 2019, 473(1): 201-214

[25]

Williams M B. Results on coupled Ricci and harmonic map flows. Adv. Geom., 2015, 15(1): 7-26

[26]

Yang F, Shen J F. Volume growth for gradient shrinking solitons of Ricci-harmonic flow. Sci. China Math., 2012, 55(6): 1221-1228

[27]

Zhu M. On the relation between Ricci-Harmonic solitons and Ricci solitons. J. Math. Anal. Appl., 2017, 447(2): 882-889

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

/