PDF
Abstract
In this paper, the authors study gradient Ricci-Harmonic solitons on warped product manifolds. First, they prove triviality results for the potential and warping functions that reach a maximum or a minimum. In order to provide nontrivial examples, they consider the base and the fiber conformal to a semi-Euclidean space, which is invariant under the action of a translation group of co-dimension one. This approach allows them to produce infinitely many examples of geodesically complete semi-Riemannian Ricci-Harmonic solitons not present in the literature.
Keywords
Warped product
/
Gradient Ricci-Harmonic solitons
/
Semi-Riemannian metric
/
Group action
/
58J60
/
53C25
/
53C21
Cite this article
Download citation ▾
Elismar Batista, Levi Adriano, Willian Tokura.
On Warped Product Gradient Ricci-Harmonic Soliton.
Chinese Annals of Mathematics, Series B 1-16 DOI:10.1007/s11401-026-0017-8
| [1] |
Besse A L. Einstein manifolds, 2008, Berlin, Springer-VerlagReprint of the 1987 edition
|
| [2] |
Bishop R L, O’Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc., 1969, 145: 1-49
|
| [3] |
Chen B-Y. Differential Geometry of Warped Product Manifolds and Submanifolds, 2017, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd.
|
| [4] |
Cheng L, Zhu A. On the extension of the harmonic Ricci flow. Geom. Dedicata, 2013, 164: 179-185
|
| [5] |
Dobarro F, Lami Dozo E. Scalar curvature and warped products of Riemann manifolds. Trans. Amer. Math. Soc., 1987, 303(1): 161-168
|
| [6] |
Eells JJr., Sampson J H. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 1964, 86: 109-160
|
| [7] |
Fernández-López M, García-Río E. A remark on compact Ricci solitons. Math. Ann., 2008, 340(4): 893-896
|
| [8] |
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 1977, Berlin, Springer-Verlag
|
| [9] |
Guo H X, He T T. Harnack estimates for geometric flows, applications to Ricci flow coupled with harmonic map flow. Geom. Dedicata, 2014, 169: 411-418
|
| [10] |
Guo H X, Philipowski R, Thalmaier A. On gradient solitons of the Ricci-harmonic flow. Acta Math. Sin. (Engl. Ser.), 2015, 31(11): 1798-1804
|
| [11] |
Hamilton R S. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 1982, 17(2): 255-306
|
| [12] |
Ivey T. New examples of complete Ricci solitons. Proc. Amer. Math. Soc., 1994, 122(1): 241-245
|
| [13] |
Kim B H, Lee S D, Choi J H, Lee Y O. On warped product spaces with a certain Ricci condition. Bull. Korean Math. Soc., 2013, 50(5): 1683-1691
|
| [14] |
Kim D-S, Kim Y H. Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc., 2003, 131(8): 2573-2576
|
| [15] |
Lemes de Sousa M, Pina R. Gradient Ricci solitons with structure of warped product. Results in Mathematics, 2017, 71(3–4): 825-840
|
| [16] |
Li Y. Eigenvalues and entropies under the harmonic-Ricci flow. Pacific J. Math., 2014, 267(1): 141-184
|
| [17] |
Müller R. Monotone volume formulas for geometric flows. J. Reine Angew. Math., 2010, 643: 39-57
|
| [18] |
Müller R. Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4), 2012, 45(1): 101-142
|
| [19] |
Neto B L, Tenenblat K. On gradient Yamabe solitons conformal to a pseudo-Euclidian space. J. Geom. Phys., 2018, 123: 284-291
|
| [20] |
O’Neill B. Semi-Riemannian Geometry With Applications to Relativity, 1983, New York, Academic Press, Inc.
|
| [21] |
Perelman, G., The entropy formula for the Ricci flow and its geometric applications, 2002, arXiv: math/0211159.
|
| [22] |
Petersen P, Wylie W. On gradient Ricci solitons with symmetry. Proc. Amer. Math. Soc., 2009, 137(6): 2085-2092
|
| [23] |
Petersen P, Wylie W. Rigidity of gradient Ricci solitons. Pacific J. Math., 2009, 241(2): 329-345
|
| [24] |
Tokura W, Adriano L, Pina R, Barboza M. On warped product gradient Yamabe solitons. J. Math. Anal. Appl., 2019, 473(1): 201-214
|
| [25] |
Williams M B. Results on coupled Ricci and harmonic map flows. Adv. Geom., 2015, 15(1): 7-26
|
| [26] |
Yang F, Shen J F. Volume growth for gradient shrinking solitons of Ricci-harmonic flow. Sci. China Math., 2012, 55(6): 1221-1228
|
| [27] |
Zhu M. On the relation between Ricci-Harmonic solitons and Ricci solitons. J. Math. Anal. Appl., 2017, 447(2): 882-889
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.