On

¯b
-Harmonic Maps from Pseudo-Hermitian Manifolds to Kähler Manifolds

Yuxin Dong , Hui Liu , Biqiang Zhao

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 229 -250.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :229 -250. DOI: 10.1007/s11401-026-0015-x
Article
research-article

On

¯b
-Harmonic Maps from Pseudo-Hermitian Manifolds to Kähler Manifolds

Author information +
History +
PDF

Abstract

This paper considers maps from pseudo-Hermitian manifolds to Kähler manifolds and introduces partial energy functionals for these maps. First, the authors obtain a foliated Lichnerowicz type result on general pseudo-Hermitian manifolds, which generalizes a related result on Sasakian manifolds by Shen–Shen–Zhang (2013). Next, the authors investigate critical maps of the partial energy functionals, which are referred to as

¯b
-harmonic maps and b-harmonic maps. The authors give a foliated result for both
¯b
- and b-harmonic maps, generalizing a foliated result of Petit (2002) for harmonic maps. Then the authors are able to generalize Siu’s holomorphicity result for harmonic maps by Siu (1980) to the case for
¯b
- and b-harmonic maps.

Keywords

Pseudo-Hermitian manifold /

-Harmonic maps')">
¯b
-Harmonic maps
/ Foliated CR map / 53C25 / 58E20

Cite this article

Download citation ▾
Yuxin Dong, Hui Liu, Biqiang Zhao. On
¯b
-Harmonic Maps from Pseudo-Hermitian Manifolds to Kähler Manifolds. Chinese Annals of Mathematics, Series B, 2026, 47(1): 229-250 DOI:10.1007/s11401-026-0015-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barletta E, Dragomir S, Urakawa H. Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J., 2001, 50(2): 719-746

[2]

Chong T, Dong Y X, Ren Y B, Yang G L. On harmonic and pseudoharmonic maps from pseudo-Hermitian manifolds. Nagoya Math. J., 2019, 234: 170-210

[3]

Dong, Y. X., On (H,H~)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(H, {\tilde H})$$\end{document}-harmonic maps between pseudo-Hermitian manifolds, 2016, arXiv:1610.01032.

[4]

Dragomir S, Kamishima Y. Pseudoharmonic maps and vector fields on CR manifolds. J. Math. Soc. Japan, 2010, 62(1): 269-303

[5]

Dragomir S, Tomassini G. Differential Geometry and Analysis on CR Manifolds, 2006, Boston, MA, Birkhäuser Boston, Inc.246

[6]

Eells J, Lemaire L. Selected Topics in Harmonic Maps, 1983, Providence, RI, American Mathematical Society50

[7]

Eells JJr., Sampson J H. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 1964, 86: 109-160

[8]

Gherghe C, Ianus S, Pastore A M. CR-manifolds, harmonic maps and stability. J. Geom., 2001, 71(1–2): 42-53

[9]

Graham C R, Lee J M. Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J., 1988, 57(3): 679-720

[10]

Jost J. Nonlinear Methods in Riemannian and Kählerian Geometry, 1991second editionBasel, Birkhäuser Verlag 10

[11]

Jost J, Yau S-T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math., 1993, 170(2): 221-254

[12]

Li S-Y, Son D N. CR-analogue of the Siu-∂∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\partial{\overline \partial}$$\end{document}-formula and applications to the rigidity problem for pseudo-Hermitian harmonic maps. Proc. Amer. Math. Soc., 2019, 147(12): 5141-5151

[13]

Lichnerowicz A. Applications harmoniques et variétés kähleriennes, 1970, London, New York, Academic Press341402III

[14]

Liu K F, Yang X K. Hermitian harmonic maps and non-degenerate curvatures. Math. Res. Lett., 2014, 21(4): 831-862

[15]

Petit R. Harmonic maps and strictly pseudoconvex CR manifolds. Comm. Anal. Geom., 2002, 10(3): 575-610

[16]

Petit R. Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces. Ann. Global Anal. Geom., 2009, 35(1): 1-37

[17]

Sampson J H. Some properties and applications of harmonic mappings. Ann. Sci. École Norm. Sup. (4), 1978, 11(2): 211-228

[18]

Shen B, Shen Y B, Zhang X. Holomorphic maps from Sasakian manifolds into Kähler manifolds. Chin. Ann. Math. Ser. B, 2013, 34(4): 575-586

[19]

Siu Y T. The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. of Math. (2), 1980, 112(1): 73-111

[20]

Tanaka N. A differential geometric study on strongly pseudo-convex manifolds, 1975, Tokyo, Department of Mathematics, Kyoto University, Kinokuniya Book Store Co., Ltd.9

[21]

Webster S M. Pseudo-Hermitian structures on a real hypersurface. J. Differential Geometry, 1978, 13(1): 25-41

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/