Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds

Jixiang Fu , Jieming Yang

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 185 -212.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :185 -212. DOI: 10.1007/s11401-026-0013-z
Article
research-article

Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds

Author information +
History +
PDF

Abstract

The authors show the stability of Hermitian Yang-Mills metrics under deformations of complex structures of either the Iwasawa or the Nakamura threefolds.

Keywords

Deformations / Balanced metrics / Hermitian Yang-Mills metrics / 53C55 / 53B35 / 32Q26

Cite this article

Download citation ▾
Jixiang Fu, Jieming Yang. Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds. Chinese Annals of Mathematics, Series B, 2026, 47(1): 185-212 DOI:10.1007/s11401-026-0013-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alessandrini L, Bassanelli G. Small deformations of a class of compact non-Kähler manifolds. Proc. Amer. Math. Soc., 1990, 109: 1059-1062

[2]

Andreas B, Garcia-Fernandez M. Solutions of the Strominger system via stable bundles on Calabi-Yau threefolds. Comm. Math. Phys., 2012, 315: 153-168

[3]

Angella D, Calamai S, Spotti C. Remarks on ChernEinstein Hermitian metrics. Math. Z., 2020, 295: 1707-1722

[4]

Angella D, Ugarte L. On small deformations of balanced manifolds. Differential Geom. Appl., 2017, 54: 464-474

[5]

Collins T, Picard S, Yau S-T. Stability of the tangent bundle through conifold transitions. Comm. Pure Appl. Math., 2024, 77: 284-371

[6]

Dervan R, Sektnan L. Hermitian Yang-Mills connections on blow-ups. J. Geom. Anal., 2021, 31: 516-542

[7]

Fu J X. On non-Kähler Calabi-Yau threefolds with balanced metrics. Proceedings of the International Congress of Mathematicians, Volume II, 2010, New Delhi, Hindustan Book Agency705716

[8]

Fu J X, Li J, Yau S-T. Balanced metrics on non-Kähler Calabi-Yau threefolds. J. Differential Geom., 2012, 90: 81-129

[9]

Fu J X, Wang Z Z, Wu D M. Form-type Calabi-Yau equation. Math. Res. Lett., 2010, 17: 887-903

[10]

Fu J X, Yau S-T. The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differential Geom., 2008, 78: 369-428

[11]

Fu J X, Yau S-T. A note on small deformations of balanced manifolds. C. R. Math. Acad. Sci. Paris, 2011, 349: 793-796

[12]

Kobayashi S. Differential Geometry of Complex Vector Bundles, 1987, Princeton, NJ, Princeton University Press

[13]

Li J, Yau S-T. The existence of supersymmetric string theory with torsion. J. Differential Geom., 2005, 70: 143-181

[14]

Lübke M, Teleman A. The Kobayashi-Hicthin Correspondence, 1995, River Edge, NJ, World Scientific Publishing Co., Inc.

[15]

Morrow J, Kodaira K. Complex Manifolds, 2006, Providence, RI, AMS Chelsea Publishing

[16]

Nakamura I. Complex parallelisable manifolds and their small deformations. J. Differential Geometry, 1975, 10: 85-112

[17]

Phong D H, Picard S, Zhang X W. Anomaly flows. Comm. Anal. Geom., 2018, 26: 955-1008

[18]

Popovici D. Holomorphic deformations of balanced Calabi-Yau ∂∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\partial{\overline \partial}$$\end{document}-manifolds. Ann. Inst. Fourier Grenoble, 2019, 69: 673-728

[19]

Rao S, Wan X Y, Zhao Q T. Power series proofs for local stabilities of Kähler and balanced structures with mild ∂∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\partial{\overline \partial}$$\end{document}-lemma. Nagoya Math. J., 2022, 246: 305-354

[20]

Rao S, Zhao Q T. Several special complex structures and their deformation properties. J. Geom. Anal., 2018, 28: 2984-3047

[21]

Streets J, Tian G. A parabolic flow of pluriclosed metrics. Int. Math. Res. Not., 2010, 2010(16): 3101-3133

[22]

Székelyhidi G, Tosatti V, Weinkove B. Gauduchon metrics with prescribed volume form. Acta Math., 2017, 219: 181-211

[23]

Tian G. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Adv. Ser. Math. Phys., 1987, 1: 629-646

[24]

Todorov A. The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi-Yau) manifolds I. Comm. Math. Phys., 1989, 126: 325-346

[25]

Tosatti V. Non-Käahler Calabi-Yau manifolds. Contemp. Math., 2015, 644: 261-277

[26]

Tosatti V, Weinkove B. On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differential Geom., 2015, 99: 125-163

[27]

Uhlenbeck K, Yau S-T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math., 1986, 39: 257-293

[28]

Wills R O. Differential Analysis on Complex Manifolds, 2008Third editionNew York, Springer-Verlag 65

[29]

Wu C C. On the geometry of superstrings with torsion, 2006, Cambridge, MA, Harvard University

[30]

Yau S-T. On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation, I. Comm. Pure Appl. Math., 1978, 31: 339-411

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

/