On Geometric Realization of the Discrete Manakov Equation of Mixed Type

Qing Ding , Wenyu Sun

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 157 -168.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :157 -168. DOI: 10.1007/s11401-026-0012-0
Article
research-article

On Geometric Realization of the Discrete Manakov Equation of Mixed Type

Author information +
History +
PDF

Abstract

The authors introduce the coupled discrete 2-component nonlinear Schrödinger equation with M-solutions and prove that this type of discrete equation is an integrable discretization of the integrable Manakov equation of mixed type. Moreover, the integrable discrete equation of 1-d Schrödinger flow to the pseudo-projective 2-space U(2, 1)/U(1, 1) × U(1) is shown to be a geometric realization of the integrable discrete Manakov equation of mixed type.

Keywords

Manakov equation / Geometric realization / Integrable discretization / 53C30 / 53E30 / 35Q55 / 37K25 / 35Q60

Cite this article

Download citation ▾
Qing Ding, Wenyu Sun. On Geometric Realization of the Discrete Manakov Equation of Mixed Type. Chinese Annals of Mathematics, Series B, 2026, 47(1): 157-168 DOI:10.1007/s11401-026-0012-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, 1991, Cambridge, Cambridge University Press

[2]

Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J. Mathematical Phys., 1976, 17(6): 1011-1018

[3]

Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrödinger Systems, 2004, Cambridge, Cambridge University Press302

[4]

Akhmediev N, Krolikowski W, Snyder A W. Partially coherent solitons of variable shape. Phys. Rev. Lett., 1998, 81: 4632-4635

[5]

Al Khawaja U, Al Sakkaf L. Handbook of Exact Solutions to the Nonlinear Schrödinger Equations, 2020, Bristol UK, IOP Publishing

[6]

Baronio F, Conforti M, Degasperis A, et al.. Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett., 2014, 113: 034101

[7]

Baronio F, Degasperis A, Conforti M, Wabnitz S. Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic Rogue waves. Phys. Rev. Lett., 2012, 109: 044102

[8]

Cai D, Bishop A R, Gronbech-Jensen N. Localized states in discrete nonlinear Schrödinger equations. Phys. Rev. Lett., 1994, 72: 591-595

[9]

Chen B. Schrödinger flows to symmetric spaces and the second matrix-AKNS hierarchy. Commun. Theor. Phys. (Beijing), 2006, 45: 653-656

[10]

Chen W J, Chen S C, Liu C, et al.. Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra. Phys. Rev. A, 2022, 105: 043526

[11]

Delyon F, Levy Y E, Souillard B. Nonperturbative bistability in periodic nonlinear media. Phys. Rev. Lett., 1986, 57: 2010-2013

[12]

Ding Q. A discretization of the matrix nonlinear Schrödinger equation. J. Phys. A: Math. Gen., 2000, 33: 6769-6778

[13]

Ding Q, Ye C H, Zhong S P. The Manakov equation of mixed type and its matrix generalization. Pacific J. Math., 2025, 339(2): 265-282

[14]

Ding Q, Zhong S P. On geometric realization of the general Manakov system. Chin. Ann. Math. Ser. B, 2023, 44(5): 753-764

[15]

Ding Q, Zhong S P, Ma D. A Geometric characterization of a kind of Manakov systems. Scientia Sinica Mathematica, 2024, 54(10): 1509-1520 in Chinese)

[16]

Hennig D, Sun N G, Gabriel H, Tsironis G P. Spatial properties of integrable and nonintegrable discrete nonlinear Schrödinger equations. Phys. Rev. E, 1995, 52: 255-269

[17]

Hideshi Y. Soliton resolution for the focusing integrable discrete nonlinear Schrödinger equation. Springer Pro. Math. Stat., 2018, 256: 95-102

[18]

Kanna T, Lakshmanan M, Dinda P T, Akhmediev N. Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E, 2006, 73: 026604

[19]

Langer J, Perline R. Geometric realizations of Fordy-Kulish nonlinear Schrödinger systems. Pacific J. Math., 2000, 195: 157-178

[20]

Manakov S V. On the theory of two-dimensional stationary self-focusing electro-magnetic waves. Sov. Phys. JETP, 1974, 38(2): 248-253

[21]

Nogami Y, Warke C S. Soliton solutions of multicomponent nonlinear Schrödinger equation. Phys. Lett. A, 1976, 59: 251-253

[22]

Radha R, Vinayagam P S, Porsezian K. Rotation of the trajectories of bright solitons and realignment of intensity distribution in the coupled nonlinear Schrödinger equation. Phys. Rev. E, 2013, 88: 032903

[23]

Rao J G, Kanna T, Sakkaravarthi K, He J S. Multiple double-pole bright-bright and bright-dark solitons and energy-exchanging collision in the M-component nonlinear Schrödinger equations. Phys. Rev. E, 2021, 103: 062214

[24]

Rogers C, Schief W K. Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation. Stud. Appl. Math., 1998, 101: 267-287

[25]

Terng C L, Uhlenbeck K. Schrödinger flows on Grassmannians, Integrable Systems, Geometry, and Topology, 2006, Providence, RI, Amer. Math. Soc.235256 36

[26]

Vijayajayanthi M, Kanna T, Lakshmanan M. Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A, 2008, 77: 013820

[27]

Yeh C, Bergman L. Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse. Phys. Rev. E, 1998, 57: 2398-2404

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

/