A Note on Vanishing Theorems on Non-pseudoconvex Complex Manifolds

Jun Yao , Qingchun Ji

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 145 -156.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :145 -156. DOI: 10.1007/s11401-026-0011-1
Article
research-article

A Note on Vanishing Theorems on Non-pseudoconvex Complex Manifolds

Author information +
History +
PDF

Abstract

In this paper, the authors introduce a Morse-theoretic condition under which the Levi form is allowed to have negative eigenvalues outside critical locus, and show that the existence of an exhaustion function satisfying such a condition leads to vanishing theorems.

Keywords

Levi form / Vanishing theorems / Dolbeault cohomology / Non-pseudoconvex / 32F10 / 32F32 / 32W05

Cite this article

Download citation ▾
Jun Yao, Qingchun Ji. A Note on Vanishing Theorems on Non-pseudoconvex Complex Manifolds. Chinese Annals of Mathematics, Series B, 2026, 47(1): 145-156 DOI:10.1007/s11401-026-0011-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andreotti A, Grauert H. Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 1962, 90: 193-259

[2]

Andreotti A, Vesentini E. Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ. Math. Inst. Hautes Etudes Sci., 1965, 25: 81-130

[3]

Demailly J-P. Complex Analytic and Differential Geometry, 2012, Saint-Martin d’Hères, Université de Grenoble I, Institut Fourier

[4]

Folland G B, Kohn J J. The Neumann Problem for the Cauchy-Riemann Complex, 1972, Tokyo, Princeton University Press, University of Tokyo Press75

[5]

Grauert H. On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. (2), 1958, 68: 460-472

[6]

Grauert H. Theory of q-convexity and q-concavity, Several Complex Variables, VII, 1994, Berlin, Springer-Verlag 74

[7]

Gong X H. On regularity of ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document}-solutions on aq domains with C2 boundary in complex manifolds. Trans. Amer. Math. Soc., 2025, 378: 1771-1829

[8]

Ho L-H. ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document}-problem on weakly q-convex domains. Math. Ann., 1991, 290(1): 3-18

[9]

Hörmander L V. L2 estimates and existence theorems for the ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document} operator. Acta Math., 1965, 113: 89-152

[10]

Hörmander L V. An Introduction to Complex Analysis in Several Variables, 1990Third editionAmsterdam, North-Holland Publishing Co.7

[11]

Kohn J J. Harmonic integrals on strongly pseudo-convex manifolds, I. Ann. of Math. (2), 1963, 78: 112-148

[12]

Kohn J J. Harmonic integrals on strongly pseudo-convex manifolds, II. Ann. of Math. (2), 1964, 79: 450-472

[13]

Morrey C B. The analytic embedding of abstract real-analytic manifolds. Ann. of Math. (2), 1958, 68: 159-201

[14]

Ohsawa T, Pawlaschyk T. Analytic Continuation and Q-convexity, 2022, Singapore, Springer-Verlag

[15]

Rothstein W. Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen. Math. Ann., 1955, 129: 96-138

[16]

Siu Y T. The ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document} problem with uniform bounds on derivatives. Math. Ann., 1974, 207: 163-176

[17]

Zampieri G. q-Pseudoconvexity and regularity at the boundary for solutions of the ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document}-problem. Compositio Math., 2000, 121(2): 155-162

[18]

Zampieri G. Solvability of the ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\overline \partial}$$\end{document} problem with C regularity up to the boundary on wedges of ℂN. Israel J. Math., 2000, 115: 321-331

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

/