Lower Bound Estimates of the First Steklov Eigenvalue for Compact Manifolds

Yiwei Liu , Yi-hu Yang

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 115 -126.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :115 -126. DOI: 10.1007/s11401-026-0010-2
Article
research-article

Lower Bound Estimates of the First Steklov Eigenvalue for Compact Manifolds

Author information +
History +
PDF

Abstract

Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Riemannian manifold with smooth boundary ∂Ω = Σ. Assume that the Ricci curvature of Ω is nonnegative and the principal curvatures of Σ are bounded from below by a positive constant c. In this paper, by constructing a new weight function, the authors obtain a lower bound of the first nonzero Steklov eigenvalue under the assumption that SecΩ ≥ −k, where k is a positive constant. The authors also extend this result to the Steklov-type eigenvalue problem of the weighted Laplacian on a metric measure space.

Keywords

Lower bound / Steklov eigenvalue / Weight function / 53C21 / 53C24

Cite this article

Download citation ▾
Yiwei Liu, Yi-hu Yang. Lower Bound Estimates of the First Steklov Eigenvalue for Compact Manifolds. Chinese Annals of Mathematics, Series B, 2026, 47(1): 115-126 DOI:10.1007/s11401-026-0010-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deng, Y. L., Du, F., Mao, J. and Zhao, Y., Sharp eigenvalue estimates and related rigidity theorems, 2020, arXiv: 2003.13231.

[2]

Duncan, Jonah A. J. and Kumar, A., The first Steklov eigenvalue on manifolds with non-negative Ricci curvature and convex boundary, Journal of Geometric Analysis, 35(3), 2025, Paper No. 95, 18 pp.

[3]

Escobar J F. The geometry of the first non-zero Stekloff eigenvalue. Journal of Functional Analysis, 1997, 150(2): 544-556

[4]

Escobar J F. An isoperimetric inequality and the first Steklov eigenvalue. Journal of Functional Analysis, 1999, 165(1): 101-116

[5]

Ge J. Comparison theorems for manifolds with mean convex boundary. Communications in Contemporary Mathematics, 2015, 17(5): 1550010 12 pp

[6]

Girouard A, Polterovich I. Spectral geometry of the Steklov problem. Journal of Spectral Theory, 2017, 7(2321-359

[7]

Greene R E, Wu H. On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana University Mathematics Journal, 1973, 22(7): 641-653

[8]

Greene R E, Wu H. C convex functions and manifolds of positive curvature. Acta Mathematica, 1976, 137(3–4): 209-245

[9]

Greene R E, Wu H. C approximations of convex, subharmonic, and plurisubharmonic functions. Annales Scientifiques de l’École Normale Supérieure, Quatrième Série, 1979, 12(1): 47-84

[10]

Kasue A. A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Japanese Journal of Mathematics, New series, 1982, 8(2): 309-341

[11]

Kuznetsov N, Kulczycki T, Kwaśnicki M, et al.. The legacy of Vladimir Andreevich Steklov. Notices of the AMS, 2014, 61(1): 9-22

[12]

Li H Z, Wei Y. Rigidity theorems for diameter estimates of compact manifold with boundary. International Mathematics Research Notices, IMRN, 2015, 2015(11): 3651-3668

[13]

Ma L, Du S H. Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. Comptes Rendus Mathématique, Académie des Sciences, Paris, 2010, 348(21–22): 1203-1206

[14]

Montaño Carreño Ó A A. The Stekloff problem for rotationally invariant metrics on the ball. Revista Colombians de Mateméticas, 2013, 47(3): 181-190

[15]

Montaño Carreño Ó A A. Escobars conjecture for the first Steklov eigenvalue on n-ellipsoids. Revista de Ciencias, 2016, 20(2): 55-61

[16]

Payne L E. Some isoperimetric inequalities for harmonic functions. SIAM Journal on Mathematical Analysis, 1970, 1(3): 354-359

[17]

Provenzano L, Stubbe J. Weyl-type bounds for Steklov eigenvalues. Journal of Spectral Theory, 2018, 9(1): 349-377

[18]

Qiu G H, Xia C. A generalization of Reilly’s formula and its applications to a new Heintze–Karcher type inequality. International Mathematics Research Notices, IMRN, 2015, 2015(17): 7608-7619

[19]

Reilly R. Applications of the Hessian operator in a Riemannian manifold. Indiana University Mathematics Journal, 1977, 26(3): 459-472

[20]

Stekloff W. Sur les problèmes fondamentaux de la physique mathématique. Annales Scientifiques de l’École Normale Supérieure, Troisième Série, 1902, 19: 455-490

[21]

Wei G F, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. Journal of Differential Geometry, 2009, 83(2): 337-405

[22]

Xia C, Xiong C W. Escobars conjecture on a sharp lower bound for the first nonzero Steklov eigenvalue. Peking Mathematical Journal, 2024, 7(2): 759-778

[23]

Xiong C W. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. Journal of Functional Analysis, 2018, 275(12): 3245-3258

[24]

Xiong, C. W., On the spectra of three Steklov eigenvalue problems on warped product manifolds, The Journal of Geometric Analysis, 32(5), 2022, Paper No. 153, 35 pp.

[25]

Zhao Y, Wu C X, Mao J, Du F. Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates. Revista Matemática Complutense, 2020, 33: 389-414

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/