Regularity for Weakly H-surfaces into Static Lorentzian Manifolds

Zijun Wang , Miaomiao Zhu

Chinese Annals of Mathematics, Series B ›› : 1 -10.

PDF
Chinese Annals of Mathematics, Series B ›› :1 -10. DOI: 10.1007/s11401-026-0002-2
Article
research-article

Regularity for Weakly H-surfaces into Static Lorentzian Manifolds

Author information +
History +
PDF

Abstract

The authors investigate H-surfaces into static Lorentzian manifolds and show the Hölder continuity of weak solutions.

Keywords

Regularity / H-surface / Static Lorentzian manifold / 53B43 / 58B20

Cite this article

Download citation ▾
Zijun Wang, Miaomiao Zhu. Regularity for Weakly H-surfaces into Static Lorentzian Manifolds. Chinese Annals of Mathematics, Series B 1-10 DOI:10.1007/s11401-026-0002-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai, W. and Zhu, M., Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds, J. Funct. Anal., 279(7), 2020, 28 pp.

[2]

Bethuel F. Un résultat de régularité pour les solutions de léquation de surfaces à courbure moyenne prescrite. C. R. Acad. Sci., Paris, Sér. I, Math., 1992, 314(13): 1003-1007

[3]

Bethuel F. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78: 417

[4]

Bethuel F, Ghidaglia J-M. Improved regularity of solutions to elliptic equations involving Jacobians and applications. J. Math. Pures Appl., IX. Sér., 1993, 72(5): 441-474

[5]

Bethuel F, Ghidaglia J-M. Some Applications of the Coarea Formula to Partial Differential Equations, Geometry in Partial Differential Equations, 1994, River Edge, NJ, World Sci. Publ.1-17

[6]

Choné P. A regularity result for critical points of conformally invariant functionals. Potential Anal., 1995, 4(3): 269-296

[7]

Evans L C. Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal., 1991, 116(2): 101-113

[8]

Grüter M. Über die Regularit ät schwacher Lösungen des systems Δu= 2H(x)xuxv, 1979

[9]

Grüter M. Regularity of weak H-surfaces. J. Reine Angew. Math., 1981, 329: 1-15

[10]

Heinz E. Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer systeme. Nachr. Akad. Wiss. Gött. Math. Phys. Kl., 1975, II(1): 1-13

[11]

Heinz E. Über die Regularität der Lösungen nichtlinearer Wellengleichungen. Nachr. Akad. Wiss. Gott. Math. Phys. Kl., 1975, II(2): 15-26

[12]

Heinz E. Über die Regularität schwacher Lösungen nichtlinearer elliptischer Systeme. Nachr. Akad. Wiss. Gott. Math. Phys. Kl., 1985, II(1): 1-15

[13]

Hélein F. Régularité des applications faiblement harmoniques entre une surface et une sphere. C. R. Acad. Sci. Paris Sér. I Math., 1990, 311(9): 519-524

[14]

Hélein F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math., 1991, 70(2): 203-218

[15]

Hélein F. Régularité des applications faiblement harmoniques entre une surface et une variété Riemannienne. C. R. Acad. Sci. Paris Sér. I Math., 1991, 312(8): 591-596

[16]

Hélein, F., Problèmes invariants par transformations conformes en dimension 2, 2001, arXiv: 0101.237v1.

[17]

Hélein F. Harmonic Maps, Conservation Laws and Moving Frames, 2002, Cambridge, Cambridge university Press

[18]

Hildebrandt S. Nonlinear elliptic systems and harmonic mappings. Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, 1980, 1–3: 481-615

[19]

Hildebrandt S. Quasilinear Elliptic Systems in Diagonal Form, Systems of Nonlinear Partial Differential Equations, 1983, Dordrecht, Oxford, Springer Nether lands

[20]

Isobe T. Regularity of harmonic maps into a static Lorentzian manifold. J. Geom. Anal., 1998, 8(3): 447-463

[21]

Kramer D, Stephani H, Hertl E, MacCallum M. Exact Solutions of Einstein’s Field Equations, 1980, Cambridge, New York, Cambridge University Press

[22]

O’Neill B. Semi-Riemannian Geometry: With Applications to Relativity, 1983, New York, Academic Press

[23]

Rivière T. Conservation laws for conformally invariant variational problems. Invent. Math., 2007, 168(1): 1-22

[24]

Rivière, T., Conformally invariant 2-dimensional variational problems, Cours joint de lInstitut Henri Poincaré-Paris XII Creteil, preprint, 2010.

[25]

Rivière T, Struwe M. Partial regularity for harmonic maps and related problems. Comm. Pure Appl. Math., 2008, 61(4): 451-463

[26]

Roger M. An Lp regularity theory for harmonic maps. Trans. Amer. Math. Soc., 2015, 367(1): 1-30

[27]

Rupflin M. An improved uniqueness result for the harmonic map flow in two dimensions. Calc. Var. Par. Differ. Equ., 2008, 33(3): 329-341

[28]

Schikorra A. A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(2): 503-515

[29]

Sharp B. Higher integrability for solutions to a system of critical elliptic PDE. Methods Appl. Anal., 2014, 21(2): 221-240

[30]

Sharp B, Topping P. Decay estimates for Rivières equation, with applications to regularity and compactness. Trans. Amer. Math. Soc., 2013, 365(5): 2317-2339

[31]

Strzelecki P. A new proof of regularity of weak solutions of the H-surface equation. Calc. Var. Par. Differ. Equ., 2003, 16(3): 227-242

[32]

Wente H C. An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl., 1969, 26: 318-344

[33]

Zhu M. Regularity for harmonic maps into certain pseudo-Riemannian manifolds. J. Math. Pures Appl., 2013, 99(1): 106-123

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/