Symmetric Reduction of a Regular Controlled Lagrangian System with a Momentum Map

Hong Wang

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 71 -100.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :71 -100. DOI: 10.1007/s11401-026-0001-3
Article
research-article

Symmetric Reduction of a Regular Controlled Lagrangian System with a Momentum Map

Author information +
History +
PDF

Abstract

In this paper, the author first defines a regular controlled Lagrangian (RCL for short) system on a symplectic fiber bundle, establishing a good expression of the dynamical vector field of an RCL system. This dynamical vector field synthesizes the Euler-Lagrange vector field and its changes under the actions of the external force and the control. Moreover, the author describes the RCL-equivalence, the RpCL-equivalence, and the RoCL-equivalence, proving regular point and regular orbit reduction theorems for the RCL system and the regular Lagrangian system with symmetry and a momentum map. Finally, as an application the author considers the regular point reducible RCL systems on a generalization of Lie group.

Keywords

Regular controlled Lagrangian system / Legendre transformation / RCL-equivalence / Momentum map / Regular point reduction / Regular orbit reduction / 70H33 / 53D20 / 70Q05

Cite this article

Download citation ▾
Hong Wang. Symmetric Reduction of a Regular Controlled Lagrangian System with a Momentum Map. Chinese Annals of Mathematics, Series B, 2026, 47(1): 71-100 DOI:10.1007/s11401-026-0001-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham R, Marsden J E. Foundations of Mechanics, 1987second ed.Redwood City, CA, Addison-Wesley

[2]

Abraham R, Marsden J E, Ratiu T S. Manifolds, Tensor Analysis and Applications, 1988, New York, Springer-Verlag 75

[3]

Arnold V I. Mathematical Methods of Classical Mechanics, 1989second ed.New York, Springer-Verlag 60

[4]

Kazhdan D, Kostant B, Sternberg S. Hamiltonian group actions dynamical systems of Calogero type. Comm. Pure Appl Math., 1978, 31: 481-508

[5]

Libermann P, Marle C-M. Symplectic Geometry and Analytical Mechanics, 1987, Dordrecht, D. Reidel Publshing Co.

[6]

Marle G-M. Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics, 1976, Boston, D. Reidel Publshing Co.249269

[7]

Marsden J E. Lectures on Mechanics, 1992, New York, Cambridge University Press 174

[8]

Marsden J E, Misiolek G, Ortega J-P, et al.. Hamiltonian Reduction by Stages, 2007, Berlin, Springer-Verlag1913

[9]

Marsden J E, Montgomery R, Ratiu T S. Reduction, Symmetry and Phases in Mechanics, 1990, Providence, Rhode Island, American Mathematical Society88

[10]

Marsden J E, Perlmutter M. The orbit bundle picture of cotangent bundle reduction. C. R. Math. Acad. Sci. Soc. R. Can., 2000, 22: 33-54

[11]

Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry, 1999second ed.New York, Springer-Verlag 17

[12]

Marsden J E, Wang H, Zhang Z X. Regular reduction of controlled Hamiltonian systems with symplectic structure and symmetry. Diff. Geom. Appl., 2014, 33: 13-45

[13]

Marsden J E, Weinstein A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., 1974, 5: 121-130

[14]

Meyer K R. Symmetries and Integrals in Mechanics, 1973, New York, London, Academic Press259273

[15]

Nijmeijer H, Schaft A J. Nonlinear Dynamical Control Systems, 1990, New York, Springer-Verlag

[16]

Ortega J P, Ratiu T S. Momentum Maps and Hamiltonian Reduction, 2004, Boston, Birkhäuser

[17]

Tulczyjew W M. The Legendre transformation. Ann. Inst. Poincaré, 1977, 27: 101-114

[18]

Wang H. Bai C M, Gazeau J P, Ge M L. Reductions of Controlled Hamiltonian System with Symmetry. Symmetries and Groups in Contemporary Physics, 2013, Singapore, World Scientific639642

[19]

Wang H. Hamilton-Jacobi theorems for regular reducible Hamiltonian system on a cotangent bundle. J. Geom. Phys., 2017, 119: 82-102

[20]

Wang H. Some developments of reduction theory for controlled Hamiltonian system with symmetry. Sci. Sin. Math., 2018, 48: 1-12(in Chinese)

[21]

Wang, H., The geometrical structure of phase space of the controlled Hamiltonian system with symmetry, 2020, arXiv: 1802.01988.

[22]

Wang, H., Dynamical equations of the controlled rigid spacecraft with a rotor, 2020, arXiv: 2005.02221.

[23]

Wang, H., Geometric reductions, dynamics and controls for Hamiltonian system with symmetry, Dedicated to the 80th anniversary of the birth of Professor Jerrold E. Marsden, 2022, arXiv: 2208.12465.

[24]

Wang H. Hamilton-Jacobi equations for nonholonomic magnetic Hamiltonian system. Commun. Math. Res., 2022, 38(3): 351-388

[25]

Wang H. Symmetric reduction and Hamilton-Jacobi equations for the controlled underwater vehicle-rotor system. Commun. Math. Res., 2023, 39(4): 575-644

[26]

Wang H. Hamilton-Jacobi equations for regular controlled Hamiltonian system and its reduced systems. Acta Mathematica Scientia, English Series, 2023, 43B(2): 855-906

[27]

Wang H, Zhang Z X. Optimal reduction of controlled Hamiltonian system with Poisson structure and symmetry. J. Geom,. Phys., 2012, 62(5): 953-975

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

/