PDF
Abstract
In this paper, the author first defines a regular controlled Lagrangian (RCL for short) system on a symplectic fiber bundle, establishing a good expression of the dynamical vector field of an RCL system. This dynamical vector field synthesizes the Euler-Lagrange vector field and its changes under the actions of the external force and the control. Moreover, the author describes the RCL-equivalence, the RpCL-equivalence, and the RoCL-equivalence, proving regular point and regular orbit reduction theorems for the RCL system and the regular Lagrangian system with symmetry and a momentum map. Finally, as an application the author considers the regular point reducible RCL systems on a generalization of Lie group.
Keywords
Regular controlled Lagrangian system
/
Legendre transformation
/
RCL-equivalence
/
Momentum map
/
Regular point reduction
/
Regular orbit reduction
/
70H33
/
53D20
/
70Q05
Cite this article
Download citation ▾
Hong Wang.
Symmetric Reduction of a Regular Controlled Lagrangian System with a Momentum Map.
Chinese Annals of Mathematics, Series B, 2026, 47(1): 71-100 DOI:10.1007/s11401-026-0001-3
| [1] |
Abraham R, Marsden J E. Foundations of Mechanics, 1987second ed.Redwood City, CA, Addison-Wesley
|
| [2] |
Abraham R, Marsden J E, Ratiu T S. Manifolds, Tensor Analysis and Applications, 1988, New York, Springer-Verlag 75
|
| [3] |
Arnold V I. Mathematical Methods of Classical Mechanics, 1989second ed.New York, Springer-Verlag 60
|
| [4] |
Kazhdan D, Kostant B, Sternberg S. Hamiltonian group actions dynamical systems of Calogero type. Comm. Pure Appl Math., 1978, 31: 481-508
|
| [5] |
Libermann P, Marle C-M. Symplectic Geometry and Analytical Mechanics, 1987, Dordrecht, D. Reidel Publshing Co.
|
| [6] |
Marle G-M. Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics, 1976, Boston, D. Reidel Publshing Co.249269
|
| [7] |
Marsden J E. Lectures on Mechanics, 1992, New York, Cambridge University Press 174
|
| [8] |
Marsden J E, Misiolek G, Ortega J-P, et al.. Hamiltonian Reduction by Stages, 2007, Berlin, Springer-Verlag1913
|
| [9] |
Marsden J E, Montgomery R, Ratiu T S. Reduction, Symmetry and Phases in Mechanics, 1990, Providence, Rhode Island, American Mathematical Society88
|
| [10] |
Marsden J E, Perlmutter M. The orbit bundle picture of cotangent bundle reduction. C. R. Math. Acad. Sci. Soc. R. Can., 2000, 22: 33-54
|
| [11] |
Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry, 1999second ed.New York, Springer-Verlag 17
|
| [12] |
Marsden J E, Wang H, Zhang Z X. Regular reduction of controlled Hamiltonian systems with symplectic structure and symmetry. Diff. Geom. Appl., 2014, 33: 13-45
|
| [13] |
Marsden J E, Weinstein A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., 1974, 5: 121-130
|
| [14] |
Meyer K R. Symmetries and Integrals in Mechanics, 1973, New York, London, Academic Press259273
|
| [15] |
Nijmeijer H, Schaft A J. Nonlinear Dynamical Control Systems, 1990, New York, Springer-Verlag
|
| [16] |
Ortega J P, Ratiu T S. Momentum Maps and Hamiltonian Reduction, 2004, Boston, Birkhäuser
|
| [17] |
Tulczyjew W M. The Legendre transformation. Ann. Inst. Poincaré, 1977, 27: 101-114
|
| [18] |
Wang H. Bai C M, Gazeau J P, Ge M L. Reductions of Controlled Hamiltonian System with Symmetry. Symmetries and Groups in Contemporary Physics, 2013, Singapore, World Scientific639642
|
| [19] |
Wang H. Hamilton-Jacobi theorems for regular reducible Hamiltonian system on a cotangent bundle. J. Geom. Phys., 2017, 119: 82-102
|
| [20] |
Wang H. Some developments of reduction theory for controlled Hamiltonian system with symmetry. Sci. Sin. Math., 2018, 48: 1-12(in Chinese)
|
| [21] |
Wang, H., The geometrical structure of phase space of the controlled Hamiltonian system with symmetry, 2020, arXiv: 1802.01988.
|
| [22] |
Wang, H., Dynamical equations of the controlled rigid spacecraft with a rotor, 2020, arXiv: 2005.02221.
|
| [23] |
Wang, H., Geometric reductions, dynamics and controls for Hamiltonian system with symmetry, Dedicated to the 80th anniversary of the birth of Professor Jerrold E. Marsden, 2022, arXiv: 2208.12465.
|
| [24] |
Wang H. Hamilton-Jacobi equations for nonholonomic magnetic Hamiltonian system. Commun. Math. Res., 2022, 38(3): 351-388
|
| [25] |
Wang H. Symmetric reduction and Hamilton-Jacobi equations for the controlled underwater vehicle-rotor system. Commun. Math. Res., 2023, 39(4): 575-644
|
| [26] |
Wang H. Hamilton-Jacobi equations for regular controlled Hamiltonian system and its reduced systems. Acta Mathematica Scientia, English Series, 2023, 43B(2): 855-906
|
| [27] |
Wang H, Zhang Z X. Optimal reduction of controlled Hamiltonian system with Poisson structure and symmetry. J. Geom,. Phys., 2012, 62(5): 953-975
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg