Estimates for Eigenvalues of the Dirichlet Laplacian on Riemannian Manifolds

Daguang Chen , Qing-Ming Cheng

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 169 -184.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :169 -184. DOI: 10.1007/s11401-025-0066-4
Article
research-article

Estimates for Eigenvalues of the Dirichlet Laplacian on Riemannian Manifolds

Author information +
History +
PDF

Abstract

The authors revisit the eigenvalue problem of the Dirichlet Laplacian on bounded domains in complete Riemannian manifolds. By building on classical results like Li-Yau’s and Yang’s inequalities, they derive upper and lower bounds for eigenvalues. For the projective spaces and their minimal submanifolds, they also give explicit estimates on the lower bound for the eigenvalue of the Dirichlet Laplacian.

Keywords

Laplacian / Eigenvalues / Weyl’s law / Riesz mean / Universal estimates / 53C42 / 58J50

Cite this article

Download citation ▾
Daguang Chen, Qing-Ming Cheng. Estimates for Eigenvalues of the Dirichlet Laplacian on Riemannian Manifolds. Chinese Annals of Mathematics, Series B, 2026, 47(1): 169-184 DOI:10.1007/s11401-025-0066-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizenman M, Lieb E H. On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett., 1978, 66A: 427-429

[2]

Arendt W, Nittka R, Peter W, Steiner F. Arendt W, Schleich W P. Weyl’s Law: Spectral properties of the Laplacian in mathematics and physics. Mathematical Analysis of Evolution, Information, and Complexity, 2009, New York, Wiley171

[3]

Ashbaugh M S. The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and Yang H. C.. Proc. Indian Acad. Sci. Math. Sci., 2002, 112(1): 3-30

[4]

Ashbaugh M S. Universal inequalities for the eigenvalues of the Dirichlet Laplacian, Shape Optimization and Spectral Theory, 2017, Warsaw, De Gruyter Open282324

[5]

Ashbaugh M S, Benguria R D. Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, 2007, Providence, RI, Amer. Math. Soc.10513976

[6]

Ashbaugh M S, Hermi L. A unified approach to universal inequalities for eigenvalues of elliptic operators. Pacific J. Math., 2004, 217: 201-220

[7]

Ashbaugh, M. S. and Hermi, L., On Harrell-Stubbe type inequalities for the discrete spectrum of a self-adjoint operator, 2007, arXiv: 0712.4396.

[8]

Berezin F. Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR, 1972, 37: 1134-1167

[9]

Chen B Y. Total Mean Curvature and Submanifolds of Finite Type, 1984, Singapore, World Scientific Publishing Co.

[10]

Chen D G. Extrinsic estimates for eigenvalues of the Dirac operator. Math. Z., 2009, 262: 349-361

[11]

Chen D G, Cheng Q-M. Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Japan, 2008, 60: 325-339

[12]

Cheng Q-M, Yang H C. Estimates on eigenvalues of Laplacian. Math. Ann., 2005, 331: 445-460

[13]

Cheng Q-M, Yang H C. Inequalities for eigenvalues of Laplacian on domains and compact hyper-surfaces in complex projective spaces. J. Math. Soc. Japan, 2006, 58: 545-561

[14]

Cheng Q-M, Yang H C. Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann., 2007, 337: 159-175

[15]

Cheng Q-M, Yang H C. Estimates for eigenvalues on Riemannian manifolds. J. Differential Equations, 2009, 247: 2270-2281

[16]

Cheng S Y. Eigenfunctions and eigenvalues of Laplacian. Proc. Symp. Pure Math., 1975, 27: 185-193

[17]

El Soufi A, Harrell E MII, Ilias S. Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Amer. Math. Soc., 2009, 361: 2337-2350

[18]

Filonov N, Levitin M, Polterovich I, Sher D. Pólya’s conjecture for Euclidean balls. Invent. Math., 2023, 234: 129-169

[19]

Harrell E MII, Hermi L. On Riesz means of eigenvalues. Comm. Partial Differential Equations, 2011, 36(9): 1521-1543

[20]

Harrell E MII, Stubbe J. On trace identities and universal eigenvalue estimates for some partial differential operators. Trans. Amer. Math. Soc., 1997, 349(5): 1797-1809

[21]

Hile G N, Protter M H. Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J., 1980, 29: 523-538

[22]

Kac M. On some connections between probability theory and differential and integral equations. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1951, Berkeley, Los Angeles, University of California Press189215

[23]

Karamata J. Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplace’sche und Stieltjes Transformation betreffen. J. Reine Angew. Math., 1931, 164: 27-39

[24]

Laptev A, Weidl T. Sharp Lieb-Thirring inequalities in high dimensions. Acta Math., 2000, 184(1): 87-111

[25]

Laptev A, Weidl T. Recent results on Lieb-Thirring inequalities, Journées “Équations aux Dérivées Partielles”, 2000, Nantes, Univ. Nantes14 pp

[26]

Levitin M, Mangoubi D, Polterovich I. Topics in Spectral Geometry, Graduate Studies in Mathematics, 2023, Providence, RI, American Mathematical Society 237

[27]

Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys., 1983, 88: 309-318

[28]

Payne L E, Pólya G, Weinberger H F. Sur le quotient de deux fréquences propres consécutives. Comptes Rendus Acad. Sci. Paris, 1955, 241: 917-919

[29]

Payne L E, Pólya G, Weinberger H F. On the ratio of consecutive eigenvalues. J. Math. Phys., 1956, 35: 289-298

[30]

Pólya G. On the eigenvalues of vibrating membranes. Proc. London Math. Soc., 1961, 11: 419-433

[31]

Tai S S. Minimum imbeddings of compact symmetric spaces of rank one. J. Differential Geometry, 1968, 2: 55-66

[32]

Weyl H. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann., 1911, 71: 441-479

[33]

Yang H C. Estimates of the difference between consecutive eigenvalues. Inte. Cent. Theo. Phys., 1995, 3: 47-63

[34]

Yang P C, Yau S-T. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Sc. Norm. Super. Pisa-Cl. Sci., 1980, 7: 55-63

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/