Construction of Initial Data Sets for Einstein-Scalar and Einstein-Maxwell Equations by Conformally Covariant Split System

Xiaohui Tian , Naqing Xie

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 59 -70.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :59 -70. DOI: 10.1007/s11401-025-0063-7
Article
research-article

Construction of Initial Data Sets for Einstein-Scalar and Einstein-Maxwell Equations by Conformally Covariant Split System

Author information +
History +
PDF

Abstract

By using the implicit function, the authors prove the existence of solutions of the conformally covariant split system on compact three-dimensional Riemannian manifolds. They give rise to certain initial data for the Einstein-scalar system and the Einstein-Maxwell system.

Keywords

Constraint equations / Conformally covariant split / Initial data / Einstein-scalar / Einstein-Maxwell / 83C05

Cite this article

Download citation ▾
Xiaohui Tian, Naqing Xie. Construction of Initial Data Sets for Einstein-Scalar and Einstein-Maxwell Equations by Conformally Covariant Split System. Chinese Annals of Mathematics, Series B, 2026, 47(1): 59-70 DOI:10.1007/s11401-025-0063-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen P T, Clausen A, Isenberg J. Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics. Class. Quantum Grav., 2008, 25(7): 075009

[2]

Bartnik R, Isenberg J. Chruściel P T, Friedrich H. The Constraint Equations. The Einstein Equations and the Large Scale Behavior of Gravitational Fields, 2004, Basel, Birkhäuser1-38

[3]

Carlotto, A., The general relativistic constraint equations, Living Rev. Relativity, 24, 2021 Paper No. 2.

[4]

Choquet-Bruhat Y. Théorème d’existence pour certains systèmes d’quations aux dérivées partielles non lineaires. Acta Math., 1952, 88: 141-225

[5]

Choquet-Bruhat Y. Einstein constraints on compact n-dimensional manifolds. Class. Quantum Grav., 2004, 21(3): S127-S151

[6]

Choquet-Bruhat Y, Isenberg J, Pollack D, Geroch R. The constraint equations for the Einstein-scalar field system on compact manifolds. Class. Quantum Grav., 2007, 24(4): 809-828

[7]

Choquet-Bruhat Y, York J W. Held A. The Cauchy Problem. General Relativity and Gravitation, 1980, New York, Plenum99172Vol. 1

[8]

Cook, G. B., Initial data for numerical relativity, Living Rev. Relativity, 3, 2000 Paper No. 5.

[9]

Dahl M, Gicquaud R, Humbert E. A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method. Duke Math. J., 2012, 161(14): 2669-2697

[10]

Delay E. Conformally covariant parametrizations for relativistic initial data. Class. Quantum Grav., 2017, 34(1): 01LT01

[11]

Gicquaud R, Ngô Q A. A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor. Class. Quantum Grav., 2014, 31(19195014

[12]

Isenberg J. Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav., 1995, 12(92249-2274

[13]

Isenberg J, Moncrief V. Flato M, Kerner R, Lichnerowicz A. Some Results on Nonconstant Mean Curvature Solutions of the Einstein Constraint Equations. Physics on manifolds (Paris, 1992), 1994, Dordrecht, Kluwer Acad. Publ.295302 15

[14]

Isenberg J, Murchadha N O. Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations. Class. Quantum Grav., 2004, 21(3): S233-S241

[15]

Lichnerowicz A. L’intégration des equations de la gravitation relativiste et le probleme des n-corps. J. Math. Pures Appl., 1944, 23(9): 37-63

[16]

Mach P, Wang Y, Xie N. Construction of vacuum initial data by the conformally covariant split system. Class. Quantum Grav., 2019, 36(14): 145001

[17]

Maxwell D. A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature. Math. Res. Lett., 2009, 16(4627-645

[18]

Premoselli B. The Einstein-scalar field constraint system in the positive case. Commun. Math. Phys., 2014, 326(2): 543-557

[19]

York J W. Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity. J. Math. Phys., 1973, 14(4): 456-464

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/