Siegel Disks Whose Boundaries are Jordan Curves with Positive Area

Hongyu Qu , Jianyong Qiao

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) : 807 -824.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) :807 -824. DOI: 10.1007/s11401-025-0062-8
Article
research-article

Siegel Disks Whose Boundaries are Jordan Curves with Positive Area

Author information +
History +
PDF

Abstract

In this paper, the authors construct a univalent function having a relatively compact Siegel disk whose boundary is a Jordan curve of positive area. The construction is based on a general scheme in which Chéritat added Runge’s theorem, to construct a relatively compact Siegel disk and Osgood’s method for constructing a Jordan curve of positive area.

Keywords

Univalent functions / Siegel disks / Runge’s theorem / A Jordan curve of positive area / 37F50

Cite this article

Download citation ▾
Hongyu Qu, Jianyong Qiao. Siegel Disks Whose Boundaries are Jordan Curves with Positive Area. Chinese Annals of Mathematics, Series B, 2025, 46(6): 807-824 DOI:10.1007/s11401-025-0062-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biswas K. Smooth combs inside hedgehogs. Discrete Contin. Dyn. Syst., 2005, 12(5): 853-880.

[2]

Biswas K. Hedgehogs of Hausdorff dimension one. Ergodic Theory Dynam. Systems, 2008, 28(6): 1713-1727.

[3]

Cheraghi, D., Topology of irrationally indifferent attractors, 2017, arXiv:1706.02678.

[4]

Chéritat A. Relatively compact Siegel disks with non-locally connected boundaries. Math. Ann., 2011, 349(3): 529-542.

[5]

Douady A. Systèmes dynamiques holomorphes. Bourbaki seminar, vol. 1982/83, 1983, Paris. Soc. Math. France39-63(in French)

[6]

Douady A. Disques de Siegel et anneaux de Herman. Bourbaki seminar, vol. 1986/87, 1987, Paris. Soc. Math. France151-172(in French)

[7]

Handel M. A pathological area preserving C diffeomorphism of the plane. Proc. Amer. Math. Soc., 1982, 86(1): 163-168. DOI:

[8]

Herman M. Construction of some curious diffeomorphisms of the Riemann sphere. J. London Math. Soc. (2), 1986, 34(2): 375-384.

[9]

Osgood W S. A Jordan curve of positive area. Trans. Amer. Math. Soc., 1903, 4(1): 107-112.

[10]

Petersen C L, Zakeri S. On the Julia set of a typical quadratic polynomial with a Siegel disk. Ann. Math. (2), 2004, 159(1): 1-52.

[11]

Rogers J T. Is the boundary of a Siegel disk a Jordan curve?. Bull. Amer. Math. Soc. (N.S.), 1992, 27(2): 284-287.

[12]

Shishikura, M. and Yang, F., The high type quadratic Siegel disks are Jordan domains, J. Eur. Math. Soc., 2024, arXiv:1608.04106.

[13]

Sun D J, Qu H Y. A relatively compact Siegel disk with boundary of positive area. Pure Mathematics, 2024, 14(2): 799-806. in Chinese)

[14]

Yampolsky M, Zakeri S. Mating Siegel quadratic polynomials. J. Amer. Math. Soc., 2001, 14(1): 25-78.

[15]

Zakeri S. Dynamics of cubic Siegel polynomials. Comm. Math. Phys., 1999, 206(1): 185-233.

[16]

Zhang G. All bounded type Siegel disks of rational maps are quasi-disks. Invent. Math., 2011, 185(2): 421-466.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

/