PDF
Abstract
Let (M, J, g) be an anti-Kähler manifold of dimension n = 2k with an almost complex structure J and a pseudo-Riemannian metric g and let T* M be its cotangent bundle with modified Riemannian extension metric \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tilde{g}_{\nabla,G}$$\end{document}
. The modified Riemannian extension metric \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tilde{g}_{\nabla,G}$$\end{document}
is obtained by deformation in the horizontal part of the Riemannian extension known in the literature by means of the twin Norden metric G. The paper aims first to examine the curvature properties of the cotangent bundle T* M with modified Riemannian extension metric \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tilde{g}_{\nabla,G}$$\end{document}
and second to study some geometric solitons on the cotangent bundle T* M according to the modified Riemannian extension metric \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tilde{g}_{\nabla,G}$$\end{document}
.
Keywords
Cotangent bundle
/
Modified Riemannian extension
/
Soliton structure
/
53B05
/
53C07
/
53C25
/
53C55
Cite this article
Download citation ▾
Aydin Gezer, Lokman Bilen.
Some Soliton Structures on the Cotangent Bundle with Respect to the Modified Riemannian Extension.
Chinese Annals of Mathematics, Series B, 2025, 46(6): 841-858 DOI:10.1007/s11401-025-0061-9
| [1] |
Afifi Z. Riemann extensions of affine connected spaces. Quart. J. Math. Oxford Ser., 1954, 5: 312-320.
|
| [2] |
Aslanci S, Kazimova S, Salimov A A. Some remarks concerning Riemannian extensions. Ukrainian Math. J., 2010, 62(5): 661-675.
|
| [3] |
Bonome A, Castro R, Hervella L M, Matsushita Y. Construction of Norden structures on neutral 4-manifolds. JP J. Geom. Topol., 2005, 5(2): 121-140. DOI:
|
| [4] |
Calvino-Louzao E, Garcia-Rio E, Gilkey P, Vazquez-Lorenzo A. The geometry of modified Riemannian extensions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2107): 2023-2040. DOI:
|
| [5] |
Calvino-Louzao E, Garcia-Rio E, Vazquez-Lorenzo R. Riemann extensions of torsion-free connections with degenerate Ricci tensor. Can. J. Math., 2010, 62(5): 1037-1057.
|
| [6] |
Chen B Y, Deshmukh S. Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediter. J. Math., 2018, 15(5): 194
|
| [7] |
Dryuma V. The Riemann extensions in theory of differential equations and their applications. Mat. Fiz. Anal. Geom., 2003, 10(3): 307-325. DOI:
|
| [8] |
Garcia-Rio E, Kupeli D N, Vazquez-Abal M E, Vazquez-Lorenzo R. Affine Osserman connections and their Riemann extensions. Diff. Geom. Appl., 1999, 11(2): 145-153.
|
| [9] |
Gezer A, Bilen L, Cakmak A. Properties of modified Riemannian extensions. J. Math. Phys. Anal. Geom., 2015, 11: 159-173. DOI:
|
| [10] |
Güler S, Crasmareanu M. Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math., 2019, 43: 2631-2641.
|
| [11] |
Hamilton R S. The Ricci flow on surfaces. Contemp. Math., 1988, 71: 237-261.
|
| [12] |
Hirica I E, Udriste C. Ricci and Riemann solitons. Balkan J. Geom. Applications., 2016, 21(2): 35-44. DOI:
|
| [13] |
Ikawa T, Honda K. On Riemann extension. Tensor (N.S.), 1998, 60(2): 208-212. DOI:
|
| [14] |
Kowalski O, Sekizawa M. On natural Riemann extensions. Publ. Math. Debrecen., 2011, 78(3–4): 709-721.
|
| [15] |
Mok K P. Metrics and connections on the cotangent bundle. Kodai Math. Sem. Rep., 1976, 28(2–3): 226-238. DOI: 1977
|
| [16] |
Patterson E M, Walker A G. Riemann extensions. Quart. J. Math. Oxford Ser., 1952, 3: 19-28.
|
| [17] |
Salimov A. Tensor Operators and Their Applications, 2012, New York. Nova Science Publishers
|
| [18] |
Salimov A, Cakan R. On deformed Riemannian extensions associated with twin Norden metrics. Chin. Ann. Math. Ser. B., 2015, 36(3): 345-354.
|
| [19] |
Sekizawa M. Natural transformations of affine connections on manifolds to metrics on cotangent Bundles. Rend. Circ. Mat. Palermo Suppl., 1987, 2(14): 129-142. DOI:
|
| [20] |
Toomanian M. Riemann extensions and complete lifts of s-spaces, 1975, Southampton. University of Southampton
|
| [21] |
Vanhecke L, Willmore T J. Riemann extensions of D’Atri spaces. Tensor (N.S.), 1982, 38: 154-158. DOI:
|
| [22] |
Willmore T J. Riemann extensions and affine differential geometry. Results Math., 1988, 13(3–4): 403-408.
|
| [23] |
Yano K, Ishihara S. Tangent and Cotangent Bundles, 1973, New York. Marcel Dekker, Inc.
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg