On the N = 1 Bondi-Metzner-Sachs Lie Conformal Superalgebra

Wei Wang , Dong Liu , Chunguang Xia

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) : 825 -840.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) :825 -840. DOI: 10.1007/s11401-025-0053-9
Article
research-article

On the N = 1 Bondi-Metzner-Sachs Lie Conformal Superalgebra

Author information +
History +
PDF

Abstract

This paper constructs a finite Lie conformal superalgebra

R
associated to the N = 1 Bondi-Metzner-Sachs (BMS for short) superalgebra. The authors completely determine conformal derivations, the automorphism group, and the second cohomology with coefficients in trivial module. They also classify free conformal modules of rank (1 + 1) and finite irreducible conformal modules over
R
.

Keywords

Conformal derivation / Automorphism / Second cohomology / Conformal module / 17B65 / 17B68 / 17B69 / 17B70 / 81R10

Cite this article

Download citation ▾
Wei Wang, Dong Liu, Chunguang Xia. On the N = 1 Bondi-Metzner-Sachs Lie Conformal Superalgebra. Chinese Annals of Mathematics, Series B, 2025, 46(6): 825-840 DOI:10.1007/s11401-025-0053-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagnoli L, Caselli F. Classification of finite irreducible conformal modules for K′4. J. Math. Phys., 2022, 63: 09170141 pp

[2]

Barnich, G., Donnay, L., Matulich, J. and Troncoso, R., Asymptotic symmetries and dynamics of three-dimensional flat supergravity, J. High Energy Phys., 2014, 2014, Paper No. 71, 18 pp.

[3]

Boyallian C, Kac V G, Liberati J I. Irreducible modules over finite simple Lie conformal superalgebras of type K. J. Math. Phys., 2010, 51: 06350737 pp

[4]

Boyallian C, Kac V G, Liberati J I. Classification of finite irreducible modules over the Lie conformal superalgebra CK6. Comm. Math. Phys., 2013, 317: 503-546.

[5]

Boyallian C, Kac V G, Liberati J I, Rudakov A. Representations of simple finite Lie conformal superalgebras of type W and S. J. Math. Phys., 2006, 47: 04351325 pp

[6]

Cheng S J, Kac V G. Conformal modules. Asian J. Math., 1997, 1: 181-193.

[7]

Cheng S J, Kac V G. Erratum: Conformal modules. Asian J. Math., 1998, 2: 153-156.

[8]

Cheng S J, Lam N. Finite conformal modules over N = 2,3,4 superconformal algebras. J. Math. Phys., 2001, 42: 906-933.

[9]

D’Andrea A, Kac V C. Structure theory of finite conformal algebras. Selecta Math. New Ser., 1998, 4: 377-418.

[10]

Dilxat M, Chen L Y, Liu D. Classification of simple Harish-Chandra modules over the Ovsienko-Roger superalgebra. Proc. Roy. Soc. Edinburgh A, 2024, 154(2): 483-493.

[11]

Dilxat M, Gao S L, Liu D. Super-biderivations and post-Lie superalgebras on some Lie superalgebras. Acta Math. Sinica, English Series, 2023, 39(9): 1736-1754.

[12]

Dilxat M, Gao S L, Liu D. Whittaker modules for the N = 1 super-BMS3 algebra. J. Alg. Appl., 2024, 23(5): 2450088. 16 pp

[13]

Fattori D, Kac V G, Retakh A. Structure theory of finite Lie conformal superalgebras. Lie Theory and Its Applications in Physics V, 2004, River Edge, NJ. World Sci. Publ.27-63.

[14]

Han X, Wang D Y, Xia C G. Representations of Lie conformal algebras related to Galilean conformal algebras. Comm. Algebra, 2022, 50: 2427-2438.

[15]

Kac V G. Vertex Algebras for Beginners, 19982nd ed.Providence, RI. American Mathematical Society

[16]

Kac V G. Formal distribution algebras and conformal algebras. XIIth International Congress of Mathematical Physics (ICMP 97), 1999, Cambridge, MA. Int. Press80-97

[17]

Kolesnikov P. The Ado theorem for finite Lie conformal algebras with Levi decomposition. J. Algebra Appl., 2016, 15(7): 165013013 pp

[18]

Lan, C, Liu, D. and Wu, Q. Y., Local and 2-Local Derivations on the N = 1 BMS Superalgebra, Bull. Iranian Math. Soc, 51, 2025, Paper No. 62, 20 pp.

[19]

Liu D, Pei Y F, Zhao K M. Smooth modules over the N = 1 Bondi-Metzner-Sachs superalgebra. Commun. Contemp. Math., 2025, 27(4): 245002130 pp

[20]

Martínez C, Zelmanov E. Irreducible representations of the exceptional Cheng-Kac superalgebra. Trans. Am. Math. Soc., 2014, 366: 5853-5876.

[21]

Wang W, Xu Y, Xia C G. A class of Schrödinger-Virasoro type Lie conformal algebras. Int. J. Math., 2015, 26: 1550058. 12 pp

[22]

Wu Y, Wang H D, Xia C G. Representations of super deformation of Heisenberg-Virasoro type Lie conformal algebras. Comm. Algebra, 2023, 51: 1944-1954.

[23]

Wu H N, Yuan L M. Classification of finite irreducible conformal modules over some Lie conformal algebras related to the Virasoro conformal algebra. J. Math. Phys., 2017, 58: 04170110 pp

[24]

Xia C G. Representations of twisted infinite Lie conformal superalgebras. J. Algebra, 2022, 596: 155-176.

[25]

Xu Y, Yue X Q. W(a, b) Lie conformal algebra and its conformal module of rank one. Algebra Colloq., 2015, 22(3): 405-412.

[26]

Zhang W, Dong C Y. W-algebra W(2, 2) and the vertex operator algebra L(12,0)⊗L(12,0)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L({1 \over 2}, 0) \otimes L({1 \over 2}, 0)$$\end{document}. Comm. Math. Phys., 2009, 285: 991-1004.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/