Skew Constacyclic Codes over a Family of Finite Rings and Their Applications to LCD and Quantum Codes

Abdullah Dertli

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) : 937 -950.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) :937 -950. DOI: 10.1007/s11401-025-0052-x
Article
research-article

Skew Constacyclic Codes over a Family of Finite Rings and Their Applications to LCD and Quantum Codes

Author information +
History +
PDF

Abstract

This paper studies skew constacyclic codes over a family of finite rings denoted by Bk to obtain quantum codes over the fields \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{F}_{p^r}$$\end{document} and to construct Euclidean LCD skew constacyclic codes. The author investigates the structural properties of skew constacyclic codes over Bk using a decomposition approach, and also finds necessary and sufficient conditions for skew constacyclic codes that contain their duals. Finally, the author gives some examples of quantum codes obtained via the construction and LCD codes.

Keywords

Quantum codes / Skew constacyclic codes / LCD codes / Gray map / 94B05 / 94B15 / 81P70 / 94B60

Cite this article

Download citation ▾
Abdullah Dertli. Skew Constacyclic Codes over a Family of Finite Rings and Their Applications to LCD and Quantum Codes. Chinese Annals of Mathematics, Series B, 2025, 46(6): 937-950 DOI:10.1007/s11401-025-0052-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abualrub T, Aydin N, Seneviratne P. On θ-cyclic codes over F2+vF2, Australas. J. Combin., 2012, 54: 115-126

[2]

Ashraf M, Khan N, G. Quantum codes from cyclic codes over the mixed alphabet structure, Quantum Inf. Process., 2022, 215: 1-25

[3]

Boucher D, Geiselmann W, Ulmer F. Skew-cyclic codes. AAECC, 2007, 18: 379-389.

[4]

Boucher D, Solé P, Ulmer F. Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2008, 2: 273-292. DOI:

[5]

Boucher D, Ulmer F. Coding with skew polynomial rings, J. Sym. Comput., 2009, 44: 1644-1656.

[6]

Boulanouar R, Batoul A, Boucher D. An overview on skew constacyclic codes and their subclass of LCD codes, Adv. Math. Commun., 2021, 15: 611-632. DOI:

[7]

Calderbank A R, Rains E M, Shor P M, Sloane N J. Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 1998, 44: 1369-1387.

[8]

Carlet C, Guilley S. Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 2016, 10: 131-150. DOI:

[9]

Cengellenmis Y, Dertli A, Dougherty S T. Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 2014, 72: 559-580.

[10]

Dertli A, Cengellenmis Y, Eren S. On quantum codes obtained from cyclic codes over A2, Inter. J. Quantum Inform., 2015, 13: 1550031.

[11]

Dougherty S T, Kim J L, Ozkaya B, et al. . The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 2017, 4: 116-128.

[12]

Durgun Y. On LCD codes over finite chain rings, Bull. Korean Math. Soc., 2020, 57: 37-50. DOI:

[13]

Gao J, Wang Y. Quantum codes derived from negacyclic codes, Internat. J. Theoret. Phys., 2018, 573: 682-686.

[14]

Gao Y, Gao J, Yang S, Fu F W. Fq-linear skew cyclic codes over Fq2 and their applications of quantum codes construction, J. Appl. Math. Comput., 2022, 68: 349-361. DOI:

[15]

Irwansyah, Barra A, Muchtadi-Alamsyah I, et al. . Skew-cyclic codes over Bk, J. Appl. Math. Comput., 2018, 57: 69-84. DOI:

[16]

Ketkar A, Klappenecker A, Kumar S, Sarvepalli P K. Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 2006, 52: 4892-4914.

[17]

Li C. Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 2018, 86: 2261-2278.

[18]

Li C, Ding C, Li S. LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 2017, 63: 4344-4356.

[19]

Li J, Gao J, Fu F W, Ma F. FqR-linear skew constacyclic codes and their application of constructing quantum codes, Quantum Inf. Process., 2020, 197: 1-23

[20]

Liu X, Liu H. LCD codes over finite chain rings. Finite Fields Appl., 2015, 34: 1-19.

[21]

Massey J L. Linear codes with complementary duals. Discrete Math., 1992, 106: 337-342.

[22]

Sendrier N. Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discrete Math., 2004, 285: 345-347.

[23]

Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys. Review A, 1995, 52: 2493-2496.

[24]

Steane A M. Simple quantum error-correcting codes. Phys. Review A, 1996, 54: 4741-4751.

[25]

Tzeng K, Hartmann C. On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inform. Theory, 1970, 16: 644-646.

[26]

Valdebenito A E A, Tironi A L. On the dual codes of skew constacyclic codes. Adv. Math. Comm., 2018, 12: 659-679.

[27]

Yang X, Massey J L. The condition for a cyclic code to have a complementary dual. Discrete Math., 1994, 126: 391-393.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

/