Symplectic Mean Curvature Flow in ℂℙ2 with Normal Curvature Pinched

Xiang Li , Jun Sun

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) : 951 -970.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (6) :951 -970. DOI: 10.1007/s11401-025-0050-z
Article
research-article

Symplectic Mean Curvature Flow in ℂℙ2 with Normal Curvature Pinched

Author information +
History +
PDF

Abstract

In this paper, the authors show that the symplectic mean curvature flow in ℂℙ2 with normal curvature pinched exists for a long time and converges to a holomorphic curve.

Keywords

Symplectic mean curvature flow / Holomorphic curve / 53C20 / 53C40

Cite this article

Download citation ▾
Xiang Li, Jun Sun. Symplectic Mean Curvature Flow in ℂℙ2 with Normal Curvature Pinched. Chinese Annals of Mathematics, Series B, 2025, 46(6): 951-970 DOI:10.1007/s11401-025-0050-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker C, Nguyen H. Codimension two surfaces pinched by normal curvature evolving by mean curvature flow. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2017, 34: 1599-1610.

[2]

Chen J, Li J. Mean curvature flow of surfaces in 4-manifolds. Adv. Math., 2001, 163: 287-309.

[3]

Chen J, Li J, Tian G. Two-dimensional graphs moving by mean curvature flow. Acta Math. Sin. Engl. Ser., 2002, 18: 209-224.

[4]

Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer. J. Math., 1983, 105: 59-83.

[5]

Han X, Li J. The mean curvature flow approach to the symplectic isotopy problem. Int. Math. Res. Not., 2005, 26: 1611-1620.

[6]

Han X, Li J. Symplectic critical surfaces in Kähler surfaces. J. Eur. Math. Soc. (JEMS), 2010, 12(2): 505-527.

[7]

Han X, Li J, Sun J. The second type singularities of symplectic and Lagrangian mean curvature flows. Chin. Ann. Math. Ser. B, 2011, 32(2): 223-240.

[8]

Han X, Li J, Yang L. Symplectic mean curvature flow in ℂℙ2. Calc. Var. PDE, 2013, 48: 111-129.

[9]

Han X, Sun J. Translating solitons to symplectic mean curvature flows. Ann. Glob. Anal. Geom, 2010, 38: 161-169.

[10]

Wang M-T. Mean curvature flow of surfaces in Einstein four manifolds. J. Diff. Geom., 2001, 57(2): 301-338. DOI:

[11]

Wolfson J. Minimal surfaces in Kähler surfaces and Ricci curvature. J. Diff. Geom., 1989, 29(2): 281-294

[12]

Yano K. Differential Geometry on Complex and Almost Complex Spaces, 1965, Oxford. Pergamon Press

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/