PDF
Abstract
In this paper, the authors consider meromorphic solutions of nonhomogeneous differential equation
where
n is a positive integer,
a is a nonzero constant,
Pd(
z, f) is a differential polynomial in
f(
z) of degree
d with rational functions as its coefficients and
d ≤
n − 1,
u(
z) is a nonzero rational function,
v(
z) is a nonconstant polynomial with
v′(
z) ≠ (
n + 1)
a, v′(
z) ≠ −
na and
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$v^{\prime}(z)\ne-{(n+1)^{2}\over{n}}a$$\end{document}
. They prove that if it admits a meromorphic solution
f(
z) with finitely many poles, then
where
s(
z) is a rational function and
sn[(
n + 1)
s′ +
sv′] + (
n + 1)
asn+1 = (
n + 1)
u. Using this result, they also prove that if
f(
z) is a transcendental entire function, then
fn(
f′ +
af) +
qm(
f) assumes every complex number
α infinitely many times, except for a possible value
qm(0), where
n, m are positive integers with
n ≥
m + 1 and
qm(
f) is a polynomial in
f(
z) with degree
m.
Keywords
Non-linear differential equations
/
Differential polynomial
/
Meromorphic functions
/
Entire functions
/
Nevanlinna theory
/
Normal family
/
30D35
Cite this article
Download citation ▾
Linke Ma, Liangwen Liao.
On Meromorphic Solutions of Non-linear Differential Equations and Their Applications.
Chinese Annals of Mathematics, Series B, 2025, 46(6): 859-874 DOI:10.1007/s11401-025-0048-6
| [1] |
Clunie J. On integral and meromorphic functions. J. London Math. Soc., 1962, 37: 17-27.
|
| [2] |
Clunie J. On a result of Hayman. J. London Math. Soc., 1967, 42: 389-392.
|
| [3] |
Hayman W K. Meromorphic Functions, 1964, Oxford. Clarendon Press
|
| [4] |
Laine I. Nevanlinna Theory and Complex Differential Equations, 1993, Berlin. Walter de Gruyter & Co..
|
| [5] |
Li N, Yang L Z. Some results on meromorphic solutions of certain non-linear differential equations. Bull. Korean Math. Soc., 2020, 57(5): 1095-1113. DOI:
|
| [6] |
Li P. Entire solutions of certain type of differential equations. J. Math. Anal. Appl., 2008, 344(1): 253-259.
|
| [7] |
Li P, Yang C C. On the nonexistence of entire solutions of certain type of non-linear differential equations. J. Math. Anal. Appl., 2006, 320(2): 827-835.
|
| [8] |
Liao L W. Non-linear differential equations and Haymans theorem on differential polynomials. Complex Var. Elliptic Equ., 2015, 60(6): 748-756.
|
| [9] |
Liao L W, Yang C C, Zhang J J. On meromorphic solutions of certain type of non-linear differential equations. Ann. Acad. Sci. Fenn. Math., 2013, 38(2): 581-593.
|
| [10] |
Liao L W, Ye Z. A class of second order differential equations. Israel J. Math., 2005, 146: 281-301.
|
| [11] |
Liao L W, Ye Z. On solutions to nonhomogeneous algebraic differential equations and their application. J. Aust. Math. Soc., 2014, 97(3): 391-403.
|
| [12] |
Tumura Y. On the extensions of Borel’s theorem and Saxer-Csillag’s theorem. Proc. Phys. Math. Soc. Jpn., 1937, 19(3): 29-35
|
| [13] |
Yang C C. On the entire solutions of certain class of non-linear differential equations. J. Math. Anal. Appl., 1971, 33: 644-649.
|
| [14] |
Yang C C. On entire solutions of a certain type of non-linear differential equations. Bull. Austral. Math. Soc., 2001, 64(3): 377-380.
|
| [15] |
Yang C C, Li P. On the transcendental solutions of a certain type of non-linear differential equations. Arch. Math., 2004, 82(5): 442-448.
|
| [16] |
Yang C C, Ye Z. Estimates of the proximate function of differential polynomials. Proc. Japan Acad. Ser. A Math. Sci., 2007, 83(4): 50-55.
|
| [17] |
Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions, 2003, Dordrecht. Kluwer Academic Publishers Group.
|
| [18] |
Yang L. Value Distribution Theory, 1993, Beijing. Science Press Beijing
|
| [19] |
Yang L Z. Solution of a differential equation and its applications. Kodai Math. J., 1999, 22(3): 458-464.
|
| [20] |
Zalcman L. Normal families: new perspectives. Bull. Amer. Math. Soc., 1998, 35(3): 215-230.
|
| [21] |
Zhang J, Liao L W. On entire solutions of a certain type of non-linear differential and difference equations. Taiwanese J. Math., 2011, 15(5): 2145-2157.
|
| [22] |
Zhang J J, Liao L W. Admissible meromorphic solutions of algebraic differential equations. J. Math. Anal. Appl., 2013, 397(1): 225-232.
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg