Breather, Soliton and Rational Solutions for the (2 + 1)-Dimensional Hirota Equation

Gui Mu , Zhenyun Qin , Zhiqiang Yang

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 1 -22.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :1 -22. DOI: 10.1007/s11401-025-0043-y
Article
research-article

Breather, Soliton and Rational Solutions for the (2 + 1)-Dimensional Hirota Equation

Author information +
History +
PDF

Abstract

By virtue of Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduction technique, the general breather, soliton and rational solutions in the (2 + 1)-dimensional Hirota equation are constructed. These solutions are expressed in terms of Gram determinants and Schur polynomials. The Nth-order breather and soliton solutions contain 2N free complex parameters, while Nth-order rational ones possess N free complex parameters. By utilizing the Hermitian matrices, the range of free parameters is determined such that it ensures the regularity of these breather and soliton solutions. For the rational solutions, their non-singularity is proved and the parity-time-symmetric condition is derived. Furthermore, the rich dynamic patterns of breather, soliton and rational solutions are established by various choices of free parameters.

Keywords

Hirota’s bilinear method / Kadomtsev-Petviashvili hierarchy reduction technique / (2 + 1)-Dimensional Hirota equation / 37K40 / 35Q53

Cite this article

Download citation ▾
Gui Mu, Zhenyun Qin, Zhiqiang Yang. Breather, Soliton and Rational Solutions for the (2 + 1)-Dimensional Hirota Equation. Chinese Annals of Mathematics, Series B, 2026, 47(1): 1-22 DOI:10.1007/s11401-025-0043-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scott Russell J. 14th Meeting of the British Association for the Advancement of Science, 1844, 311: 390

[2]

Rayleigh L. On waves. Phil. Mag., 1876, 1: 257

[3]

Boussinesq J. Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Les Comptes Rendusde I’Académie des Sciences, 1871, 72: 755-759

[4]

Boussinesq J. Essai sur la théorie des eaux courantes, Mémoires Présentés Par Divers Savants à I’Académie des Sciences, 18771680

[5]

Ma Y C. The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math., 1979, 60(1): 43-58

[6]

Akhmediev N, Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A, 2009, 373: 2137-2145

[7]

Wang L, Yan Z Y, Guo B L. Numerical analysis of the Hirota equation: Modulational instability, breathers, rogue waves, and interactions. Chaos, 2020, 30(1013114 10 pp

[8]

Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A, 2009, 373: 675-678

[9]

Peregrine D H. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B, Appl. Math., 1983, 25: 16-43

[10]

Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys., 1979, 20: 1496-1503

[11]

Kibler B, Fatome J, Finot C, et al.. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 2010, 6: 790-795

[12]

Kibler, B., Fatome, J., Finot, C., et al., Observation of Kuznetsov-Ma soliton dynamics in optical fibre, Sci. Rep., 2, 2012, DOI: https://doi.org/10.1038/srep00463.

[13]

Frisquet B, Kibler B, Millot G. Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X, 2013, 3: 041032

[14]

Solli D R, Ropers C, Koonath P, Jalali B. Optical rogue waves. Nature, 2007, 450: 1054-1058

[15]

Moslem W M, Shukla P K, Eliasson B. Surface plasma rogue waves. Euro. Phys. Lett., 2011, 96: 25002

[16]

Yan Y Z. Vector financial rogue waves. Phys. Lett. A, 2011, 375: 4274-4279

[17]

Ablowitz M J, Clarkson P A. Nonlinear Evolution Equations and Inverse Scattering, 1991, Cambridge, Cambridge University Press

[18]

Gu C H, Hu H S, Zhou Z X. Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, 2005, Dordrecht, Springer-Verlag

[19]

Belokolos E D, Bobenko A I, Enolskii V Z, et al.. Algebro-geometric approach to nonlinear integrable equations, 1994, Berlin, Springer-Verlag

[20]

Hirota R. The Direct Method in Soliton Theory, 2004, Cambridge, Cambridge University Press

[21]

Ohta Y, Yang J. General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. Ser. A, 2012, 2142: 1716-1740

[22]

Ohta Y, Yang J. Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E, 2012, 2: 036604

[23]

Ohta Y, Yang J. Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A, 2013, 10: 105202

[24]

Mu G, Qin Z. Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. Real World Appl., 2014, 18: 1-13

[25]

Chen J C, Chen Y, Feng B F, et al.. General high-order rogue waves of the (1+1)-dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn., 2018, 87: 094007

[26]

Zhang X E, Chen Y. General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis. Nonlinear Dyn., 2018, 93: 2169-2184

[27]

Yang B, Yang J. General rogue waves in the Boussinesq equation. J. Phys. Soc. Jap., 2020, 89: 024003

[28]

Yang B, Chen J, Yang J. Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci., 2020, 30: 3027-3056

[29]

Yang B, Yang J. General rogue waves in the three-wave resonant interaction systems. IMA J. Appl. Math., 2021, 86: 378-425

[30]

Chen J C, Yang B, Feng B F. Rogue waves in the massive Thirring model. Stud. Appl. Math., 2023, 151: 1020-1052

[31]

Maccari A. A generalized Hirota equation in (2 + 1)-dimensions. J. Math. Phys., 1998, 39: 6547-6551

[32]

Kodama Y. Optical solitons in a monomode fiber. J. Stat. Phys., 1985, 39: 597-614

[33]

Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., 1987, 23: 510-524

[34]

Wang T, Qin Z, Mu G, Zheng F Z. General high-order rogue waves in the Hirota equation. Appl. Math. Lett., 2023, 140: 108571

[35]

Gao H. Dynamics of Nth-order rogue waves in (2+1)-dimensional Hirota equation. Pramana-J. Phys., 2017, 88: 1-5

[36]

Sheng H H, Yu G F. Solitons, breathers and rational solutions for a (2 + 1)-dimensional dispersive long wave system. Physica D, 2022, 432: 133140

[37]

Wu C, Wei B, Shi C, Feng B F. Multi-breather solutions to the Sasa-Satsuma equation. Proc. Math. Phys. Eng. Sci., 2022, 478: 1471-2946

[38]

Ankiewicz A, Akhmediev N. Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn., 2018, 91: 1931-1938

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

/