The Asymptotic Stability of Dirac Solitons in the Massive Thirring Model

Ruihong Ma , Engui Fan

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 35 -58.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :35 -58. DOI: 10.1007/s11401-025-0042-z
Article
research-article

The Asymptotic Stability of Dirac Solitons in the Massive Thirring Model

Author information +
History +
PDF

Abstract

In this paper, the authors employ the

¯
-steepest descent method and Bäckhand transformation to investigate the asymptotic stability of Dirac solitons in the context of the massive Thirring model (MTM for short) system. They formulate the solution to the Cauchy problem for the MTM system in terms of the solution to a Riemann-Hilbert (RH for short) problem. This RH problem is decomposed into two components: A pure radiation solution and a soliton solution. As a direct outcome of this decomposition, they establish the asymptotic stability of Dirac solitons within the MTM system.

Keywords

Massive Thirring model / Riemann-Hilbert problem /

-Steepest descent method')">
¯
-Steepest descent method
/ Bäcklund transformation / Asymptotic stability / 17B40 / 17B50

Cite this article

Download citation ▾
Ruihong Ma, Engui Fan. The Asymptotic Stability of Dirac Solitons in the Massive Thirring Model. Chinese Annals of Mathematics, Series B, 2026, 47(1): 35-58 DOI:10.1007/s11401-025-0042-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thirring W E. A soluble relativistic field theory. Ann. Phys., 1958, 3: 91-112

[2]

Gross D J, Neveu A. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D, 1974, 10: 3235-3253

[3]

Soler M, Stable C. Nonlinear spinor field with positive rest energy. Phys. Rev. D, 1970, 1: 2766-2769

[4]

Sabbah Y H, Khawaja U A. Lax pair and new exact solutions of the nonlinear Dirac equation. Commun. Nonlinear Sci. Numer. Simul., 2018, 61: 167-179

[5]

Selberg S, Tesfahun A. Low regularity well-posedness for some nonlinear Dirac equations in one space dimension. Differ. Integral. Equ., 2010, 23: 265-278

[6]

Delgado V. Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension. Proc. Am. Math. Soc., 1978, 69: 289-296

[7]

Candy T. Global existence for an L2-critical nonlinear Dirac equation in one dimension. Adv. Differ. Equations, 2011, 16: 643-666

[8]

Huh H, Moon B. Low regularity well-posedness for Gross-Neveu equations. Commun. Pure Appl. Anal., 2015, 14: 1903-1913

[9]

Orfanidis S. Soliton solutions of massive Thirring model and inverse scattering transform. Phys. Rev. D, 1976, 14: 472-478

[10]

Villarroel J. The Dbar problem and the Thirring model. Elsevier Science, 1991, 84: 207-220

[11]

Saalmann, A., Long-time asymptotics for the massive Thirring model, 2018, arXiv: 1807.00623v1.

[12]

He, C., Liu, J. Q. and Qu, C. Z., Massive Thirring model: Inverse scattering and soliton resolution, 2025, arXiv: 2307.15323v1.

[13]

Contreras A, Pelinovsky D E, Shimabukuro Y. L2-orbital stability of Dirac solitons in the massive Thirring model. Commun. Partial Differ. Equ., 2016, 41: 227-255

[14]

Pelinovsky D E, Saalmann A. Inverse Scattering for the Massive Thirring Model, 2019, New York, Springer-Verlag49752883

[15]

Newell A C. Solitons in Mathematics and Physics, 1985, Philadelphia, PA, SIAM

[16]

Drazin P G, Johnson R S. Solitons: An Introduction, 1989, Cambridge, Cambridge University Press

[17]

Ma R H, Fan E G. Long time asymptotics behavior of the focusing nonlinear Kundu-Eckhaus equation. Chin. Ann. Math. Ser. B, 2023, 44(2): 235-264

[18]

Ablowitz M, Fokas A. Complex Variables: Introduction and Applications, 2003, Cambridge, Cambridge Universtty Press

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

/